Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
نویسندگان
چکیده
Escherichia coli dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. During the catalytic cycle, DHFR undergoes conformational transitions between the closed (CS) and occluded (OS) states that, respectively, describe whether the active site is closed or occluded by the Met20 loop. The CS-->OS and the reverse transition may be viewed as allosteric transitions. Using a sequence-based approach, we identify a network of residues that represents the allostery wiring diagram. Many of the residues in the allostery wiring diagram, which are dispersed throughout the adenosine-binding domain as well as the loop domain, are not conserved. Several of the residues in the network have been previously shown by NMR experiments, mutational studies, and molecular dynamics simulations to be linked to equilibration conformational fluctuations of DHFR. To further probe the nature of events that occur during conformational fluctuations, we use a self-organized polymer model to monitor the kinetics of the CS-->OS and the reverse transitions. During the CS-->OS transition, coordinated changes in a number of residues in the loop domain enable the Met20 loop to slide along the alpha-helix in the adenosine-binding domain. Sliding is triggered by pulling of the Met20 loop by the betaG-betaH loop and the pushing action of the betaG-betaH loop. The residues that facilitate the Met20 loop motion are part of the network of residues that transmit allosteric signals during the CS-->OS transition. Replacement of M16 and G121, whose C(alpha) atoms are about 4.3 A in the CS, by a disulfide cross-link impedes that CS-->OS transition. The order of events in the OS-->CS transition is not the reverse of the forward transition. The contact Glu18-Ser49 in the OS persists until the sliding of the Met20 loop is nearly complete. The ensemble of structures in the transition state in both the allosteric transitions is heterogeneous. The most probable transition-state structure resembles the OS (CS) in the CS-->OS (OS-->CS) transition, which is in accord with the Hammond postulate. Structures resembling the OS (CS) are present as minor ( approximately 1-3%) components in equilibrated CS (OS) structures.
منابع مشابه
Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focu...
متن کاملGenetic mutations in 57 and 58 codons gene of Plasmodium vivax dihydrofolate reductase
Introduction: The use of Sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is not common in most of malarious areas because of sensivity of this parasite to chloroquine. But, Plasmodium vivax isolates are exposed to SP because of mixed infection with P.falciparum and this subject has lead to emergence of mutations in P.vdhfr gene. As Plasmodium vivax is the most prevalent specie...
متن کاملA Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis.
Protein flexibility is central to enzyme catalysis, yet it remains challenging both to predict conformational behavior on the basis of analysis of amino acid sequence and protein structure and to provide the necessary breadth of experimental support to any such predictions. Here a generic and rapid procedure for identifying conformational changes during dihydrofolate reductase (DHFR) catalysis ...
متن کاملRole of the occluded conformation in bacterial dihydrofolate reductases.
Dihydrofolate reductase (DHFR) from Escherichia coli (EcDHFR) adopts two major conformations, closed and occluded, and movement between these two conformations is important for progression through the catalytic cycle. DHFR from the cold-adapted organism Moritella profunda (MpDHFR) on the other hand is unable to form the two hydrogen bonds that stabilize the occluded conformation in EcDHFR and s...
متن کاملA Novel RDC Analysis Pipeline for Determination of Protein Structure and Dynamics
Residual Dipolar Couplings (RDCs) are one of the most recent data types to have emerged from Nuclear Magnetic Resonance (NMR) spectroscopy. They have been utilized in simultaneous protein structure determination and characterization of protein dynamics. The challenge of this particular data type is in separating structural and motional information – an undertaking that is further complicated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 374 1 شماره
صفحات -
تاریخ انتشار 2007