Non-equilibrium Dirac carrier dynamics in graphene investigated with time- and angle-resolved photoemission spectroscopy.

نویسندگان

  • Isabella Gierz
  • Stefan Link
  • Ulrich Starke
  • Andrea Cavalleri
چکیده

We have used time- and angle-resolved photoemission spectroscopy (tr-ARPES) to assess the influence of many-body interactions on the Dirac carrier dynamics in graphene. From the energy-dependence of the measured scattering rates we directly determine the imaginary part of the self-energy, visualizing the existence of a relaxation bottleneck associated with electron-phonon coupling. A comparison with static line widths obtained by high-resolution ARPES indicates that the dynamics of photo-excited carriers in graphene are solely determined by the equilibrium self-energy. Furthermore, the subtle interplay of different many-body interactions in graphene may allow for carrier multiplication, where the absorption of a single photon generates more than one electron-hole pair via impact ionization. We find that, after photo-excitation, the number of carriers in the conduction band along the ΓK-direction keeps increasing for about 40 fs after the pump pulse is gone. A definite proof of carrier multiplication in graphene, however, requires a more systematic study, carefully taking into account the contribution of momentum relaxation on the measured rise time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable carrier multiplication and cooling in graphene.

Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly (n-)doped graphene, we observe larger carrier multiplication factors (>3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium com...

متن کامل

Phonon-pump extreme-ultraviolet-photoemission probe in graphene: anomalous heating of Dirac carriers by lattice deformation.

We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E_{1u} lattice vibration at 6.3  μm. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme-ultraviolet (XUV) pulses, we measure the response of the Dirac electrons near the K point. We observe that lattice modulation causes anomalous carrier dynamics, with the D...

متن کامل

Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice.

We present a new method to engineer the charge carrier mobility and its directional asymmetry in epitaxial graphene by using metal cluster superlattices self-assembled onto the moiré pattern formed by graphene on Ir(111). Angle-resolved photoemission spectroscopy reveals threefold symmetry in the band structure associated with strong renormalization of the electron group velocity close to the D...

متن کامل

Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy.

The unusual transport properties of graphene are the direct consequence of a peculiar band structure near the Dirac point. We determine the shape of the pi bands and their characteristic splitting, and find the transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved photoemission. By detailed measurements of the pi bands we derive the stacking order, la...

متن کامل

Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2014