On the Finite Time Convergence of Cyclic Coordinate Descent Methods

نویسندگان

  • Ankan Saha
  • Ambuj Tewari
چکیده

Cyclic coordinate descent is a classic optimization method that has witnessed a resurgence of interest in machine learning. Reasons for this include its simplicity, speed and stability, as well as its competitive performance on l1 regularized smooth optimization problems. Surprisingly, very little is known about its finite time convergence behavior on these problems. Most existing results either just prove convergence or provide asymptotic rates. We fill this gap in the literature by proving O(1/k) convergence rates (where k is the iteration counter) for two variants of cyclic coordinate descent under an isotonicity assumption. Our analysis proceeds by comparing the objective values attained by the two variants with each other, as well as with the gradient descent algorithm. We show that the iterates generated by the cyclic coordinate descent methods remain better than those of gradient descent uniformly over time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Nonasymptotic Convergence of Cyclic Coordinate Descent Methods

Cyclic coordinate descent is a classic optimization method that has witnessed a resurgence of interest in Signal Processing, Statistics and Machine Learning. Reasons for this renewed interest include the simplicity, speed, and stability of the method as well as its competitive performance on `1 regularized smooth optimization problems. Surprisingly, very little is known about its non-asymptotic...

متن کامل

Analyzing Random Permutations for Cyclic Coordinate Descent

We consider coordinate descent methods on convex quadratic problems, in which exact line searches are performed at each iteration. (This algorithm is identical to Gauss-Seidel on the equivalent symmetric positive definite linear system.) We describe a class of convex quadratic problems for which the random-permutations version of cyclic coordinate descent (RPCD) outperforms the standard cyclic ...

متن کامل

Iteration Complexity of Feasible Descent Methods Iteration Complexity of Feasible Descent Methods for Convex Optimization

In many machine learning problems such as the dual form of SVM, the objective function to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining the complexity of some commonly used optimization algorithms. In this paper, we proved the global linear convergence on a wide range of algorithms when they are applied to some non-strongly convex problems. In partic...

متن کامل

Iteration complexity of feasible descent methods for convex optimization

In many machine learning problems such as the dual form of SVM, the objective function to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining the complexity of some commonly used optimization algorithms. In this paper, we proved the global linear convergence on a wide range of algorithms when they are applied to some non-strongly convex problems. In partic...

متن کامل

When Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent

Coordinate descent (CD) method is a classical optimization algorithm that has seen a revival of interest because of its competitive performance in machine learning applications. A number of recent papers provided convergence rate estimates for their deterministic (cyclic) and randomized variants that differ in the selection of update coordinates. These estimates suggest randomized coordinate de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1005.2146  شماره 

صفحات  -

تاریخ انتشار 2010