Visual synonyms for landmark image retrieval
نویسندگان
چکیده
1077-3142/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.cviu.2011.10.004 ⇑ Corresponding author. E-mail address: [email protected] (E. Gavves). In this paper, we address the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which assigns words based on closeness in descriptor space, we focus on identifying pairs of independent, distant words – the visual synonyms – that are likely to host image patches of similar visual reality. We focus on landmark images, where the image geometry guides the detection of synonym pairs. Image geometry is used to find those image features that lie in the nearly identical physical location, yet are assigned to different words of the visual vocabulary. Defined in this way, we evaluate the validity of visual synonyms. We also examine the closeness of synonyms in the L2-normalized feature space. We show that visual synonyms may successfully be used for vocabulary reduction. Furthermore, we show that combining the reduced visual vocabularies with synonym augmentation, we perform on par with the state-of-the-art bag-of-words approach, while having a 98% smaller vocabulary. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملSteganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images
In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...
متن کاملMulti-view Landmark Recognition in Large-scale Image Collections
From the large amount of web photos and other meta knowledge, recognizing landmark images has been actively studied in recent years. Previous landmark recognition research based on visual similarities have several limitations in terms of sparseness, efficiency and functionality. In this paper, I proposed a landmark hierarchy which consists of images, geographical clusters, visual clusters and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 116 شماره
صفحات -
تاریخ انتشار 2012