Maximum likelihood multivariate calibration.
نویسندگان
چکیده
Two new approaches to multivariate calibration are described that, for the first time, allow information on measurement uncertainties to be included in the calibration process in a statistically meaningful way. The new methods, referred to as maximum likelihood principal components regression (MLPCR) and maximum likelihood latent root regression (MLLRR), are based on principles of maximum likelihood parameter estimation. MLPCR and MLLRR are generalizations of principal components regression (PCR), which has been widely used in chemistry, and latent root regression (LRR), which has been virtually ignored in this field. Both of the new methods are based on decomposition of the calibration data matrix by maximum likelihood principal component analysis (MLPCA), which has been recently described (Wentzell, P. D.; et al. J. Chemom., in press). By using estimates of the measurement error variance, MLPCR and MLLRR are able to extract the optimum amount of information from each measurement and, thereby, exhibit superior performance over conventional multivariate calibration methods such as PCR and partial least-squares regression (PLS) when there is a nonuniform error structure. The new techniques reduce to PCR and LRR when assumptions of uniform noise are valid. Comparisons of MLPCR, MLLRR, PCR, and PLS are carried out using simulated and experimental data sets consisting of three-component mixtures. In all cases of nonuniform errors examined, the predictive ability of the maximum likelihood methods is superior to that of PCR and PLS, with PLS performing somewhat better than PCR. MLLRR generally performed better than MLPCR, but in most cases the improvement was marginal. The differences between PCR and MLPCR are elucidated by examining the multivariate sensitivity of the two methods.
منابع مشابه
Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration
The characteristics of baseline drift are discussed from the perspective of error covariance. From this standpoint, the operation of derivative ® lters as preprocessing tools for multivariate calibration is explored. It is shown that convolution of derivative ® lter coef® cients with the error covariance matrices for the data tend to reduce the contributions of correlated error, thereby reducin...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملHazards of Digital Smoothing Filters as a Preprocessing Tool in Multivariate Calibration
The efficacy of smoothing first-order data as a preprocessing method for multivariate calibration is discussed. In particular, the use of symmetric smoothing filters (such as Savitzky–Golay filters) is examined from the perspective of calibration performance, in contrast with past studies based on univariate signal-to-noise improvement. It is shown mathematically that in the limit of a perfect ...
متن کاملApplication of Maximum Likelihood Principal Components Regression to Fluorescence Emission Spectra
The application of maximum likelihood multivariate calibration methods to the uorescence emission spectra of mixtures of acenaphthylene, naphthalene, and phenanthrene in acetonitrile is described. Maximum likelihood principal components regression (MLPCR) takes into account the measurement error structure in the spectral data in constructing the calibration model. Measurement errors for the ...
متن کاملStep change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 69 13 شماره
صفحات -
تاریخ انتشار 1997