A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †
نویسندگان
چکیده
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
منابع مشابه
Intelligent RFID Indoor Localization System Using a Gaussian Filtering Based Extreme Learning Machine
Nowadays, the increasing demands of location-based services (LBS) have spurred the rapid development of indoor positioning systems (IPS). However, the performance of IPSs is affected by the fluctuation of the measured signal. In this study, a Gaussian filtering algorithm based on an extreme learning machine (ELM) is proposed to address the problem of inaccurate indoor positioning when significa...
متن کاملOn-Line Sequential Extreme Learning Machine
The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملSemi-supervised deep extreme learning machine for Wi-Fi based localization
Along with the proliferation of mobile devices and wireless signal coverage, indoor localization based on Wi-Fi gets great popularity. Fingerprint based method is the mainstream approach for Wi-Fi indoor localization, for it can achieve high localization performance as long as labeled data are sufficient. However, the number of labeled data is always limited due to the high cost of data acquisi...
متن کامل