Dyck paths , Motzkin paths and traffic jams

نویسندگان

  • R A Blythe
  • W Janke
  • D A Johnston
  • R Kenna
چکیده

It has recently been observed that the normalization of a one-dimensional out-of-equilibrium model, the asymmetric exclusion process (ASEP) with random sequential dynamics, is exactly equivalent to the partition function of a two-dimensional lattice path model of one-transit walks, or equivalently Dyck paths. This explains the applicability of the Lee–Yang theory of partition function zeros to the ASEP normalization. In this paper we consider the exact solution of the parallel-update ASEP, a special case of the Nagel–Schreckenberg model for traffic flow, in which the ASEP phase transitions can be interpreted as jamming transitions, and find that Lee–Yang theory still applies. We show that the parallel-update ASEP normalization can be expressed as one of several equivalent two-dimensional lattice path problems involving weighted Dyck or Motzkin paths. We introduce the notion of thermodynamic equivalence for such paths and show that the robustness of the general form of the ASEP phase diagram under various update dynamics is a consequence of this thermodynamic equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyck Paths, Motzkin Paths, and the Binomial Transform

We study the moments of orthogonal polynomial sequences (OPS) arising from tridiagonal matrices. We obtain combinatorial information about the sequence of moments of some OPS in terms of Motzkin and Dyck paths, and also in terms of the binomial transform. We then introduce an equivalence relation on the set of Dyck paths and some operations on them. We determine a formula for the cardinality of...

متن کامل

A Bijection Between 3-Motzkin Paths and Schröder Paths With No Peak at Odd Height

A new bijection between 3-Motzkin paths and Schröder paths with no peak at odd height is presented, together with numerous consequences involving related combinatorial structures such as 2-Motzkin paths, ordinary Motzkin paths and Dyck paths.

متن کامل

ECO method and hill-free generalized Motzkin paths

In this paper we study the class of generalized Motzkin paths with no hills and prove some of their combinatorial properties in a bijective way; as a particular case we have the Fine numbers, enumerating Dyck paths with no hills. Using the ECO method, we define a recursive construction for Dyck paths such that the number of local expansions performed on each path depends on the number of its hi...

متن کامل

Generalizations of The Chung-Feller Theorem

The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length n with flaws m is the n-th Catalan number and independent on m. L. Shapiro [7] found the Chung-Feller properties for the Motzkin paths. In this paper, we find the connections between these two Chung-Feller theorems. We focus on the weighted versions of three classes of lattice paths and give the generalizati...

متن کامل

Motzkin Paths with Vertical Edges

This paper considers finite lattice paths formed from the set of step vectors {→, ↗,↘, ↑, and ↓} with the restriction that vertical steps (↑, ↓) can not be consecutive. We provide a recurrence relation for enumerating paths that terminate a horizontal distance n and vertical distance m from the starting point and apply the relation to paths which are restricted to the first quadrant and paths w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004