Translation and Co-translational Membrane Engagement of Plastid-encoded Chlorophyll-binding Proteins Are Not Influenced by Chlorophyll Availability in Maize
نویسندگان
چکیده
Chlorophyll is an indispensable constituent of the photosynthetic machinery in green organisms. Bound by apoproteins of photosystems I and II, chlorophyll performs light-harvesting and charge separation. Due to the phototoxic nature of free chlorophyll and its precursors, chlorophyll synthesis is regulated to comply with the availability of nascent chlorophyll-binding apoproteins. Conversely, the synthesis and co-translational insertion of such proteins into the thylakoid membrane have been suggested to be influenced by chlorophyll availability. In this study, we addressed these hypotheses by using ribosome profiling to examine the synthesis and membrane targeting of chlorophyll-binding apoproteins in chlorophyll-deficient chlH maize mutants (Zm-chlH). ChlH encodes the H subunit of the magnesium chelatase (also known as GUN5), which catalyzes the first committed step in chlorophyll synthesis. Our results show that the number and distribution of ribosomes on plastid mRNAs encoding chlorophyll-binding apoproteins are not substantially altered in Zm-chlH mutants, suggesting that chlorophyll has no impact on ribosome dynamics. Additionally, a Zm-chlH mutation does not change the amino acid position at which nascent chlorophyll-binding apoproteins engage the thylakoid membrane, nor the efficiency with which membrane-engagement occurs. Together, these results provide evidence that chlorophyll availability does not selectively activate the translation of plastid mRNAs encoding chlorophyll apoproteins. Our results imply that co- or post-translational proteolysis of apoproteins is the primary mechanism that adjusts apoprotein abundance to chlorophyll availability in plants.
منابع مشابه
Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis.
Etioplasts of 5-day-old dark-grown barley seedlings synthesize most of the soluble and membrane proteins found in chloroplasts of illuminated plants. Prominent among these proteins are the large subunit of ribulose bisphosphate carboxylase and the alpha- and beta-subunits of the chloroplast ATPase. However, etioplasts do not synthesize four chloroplast-encoded proteins which are major constitue...
متن کاملChlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability.
Chlorophyll protein accumulation in barley (Hordeum vulgare L.) chloroplasts is controlled posttranscriptionally by light-induced formation of chlorophyll a. The abundance of translation initiation complexes associated with psbA, psaA, and rbcL mRNAs was measured using extension and inhibition analysis in plants grown in the dark for 4.5 d and then illuminated for up to 16 h. Light-induced accu...
متن کاملElucidating Mechanisms that Direct Chloroplast Encoded Proteins to the Thylakoid Membrane
iii found that the loss of certain translocon machinery had differential effects on the cotranslational targeting of plastid-encoded thylakoid membrane proteins. Acknowledgements I would like to thank Professor Alice Barkan for helping me to fully examine my research topic and consider various perspectives and contexts to interpret my results. I would also like to thank Professor Diane Hawley a...
متن کاملBiogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation
The integral membrane proteins of photosystem II (PS II) reaction center complexes are encoded by chloroplast genomes. These proteins are absent from thylakoids of PS II mutants of algae and vascular plants as a result of either chloroplast or nuclear gene mutations. To resolve the molecular basis for the concurrent absence of the PS II polypeptides, protein synthesis rates and mRNA levels were...
متن کاملLight-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings
We have previously observed (Klein, R. R., and J. E. Mullet, 1986, J. Biol. Chem. 261:11138-11145) that translation of two 65-70-kD chlorophyll a-apoproteins of Photosystem I (gene products of psaA and psaB) and a 32-kD quinone-binding protein of Photosystem II (gene product of psbA) was not detected in plastids of dark-grown barley seedlings even though transcripts for these proteins were pres...
متن کامل