Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies
نویسندگان
چکیده
Metal adhesion on metal oxides is strongly controlled by the oxide surface structure and composition, but lack of control over the surface conditions often limits the possibilities to exploit this in opto- and micro-electronics applications and heterogeneous catalysis where nanostructural control is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface-directed migration of subsurface defects affects the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies that defect concentrations in the bulk are an important, and possibly controllable, parameter for the metal-on-oxide growth.
منابع مشابه
Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption.
We studied the reduction of CuO(111) surface using density functional theory (DFT) with the generalized gradient approximation corrected for on-site Coulomb interactions (GGA + U) and screened hybrid DFT (HSE06 functional). The surface reduction process by oxygen vacancy formation and H2 adsorption on the CuO(111) surface is investigated as two different reduction mechanisms. It is found that b...
متن کاملOxygen vacancies and intense luminescence in manganese loaded Zno microflowers for visible light water splitting.
ZnO nanorods and Mn/ZnO microflowers with nano-sized petals exhibit singly ionized oxygen vacancies, V. This is strongly supported by a green photoluminescence emission at 2.22 eV and an EPR g value of 1.953, both of which are suppressed greatly after annealing in an oxygen atmosphere. A strong red emission observed during exposure to X-rays reveals the presence of F(+) centres as a consequence...
متن کاملFirst principles analysis of the stability and diffusion of oxygen vacancies in metal oxides.
Oxygen vacancies in metal oxides are known to determine their chemistry and physics. The properties of neutral oxygen vacancies in metal oxides of increasing complexity (MgO, CaO, alpha-Al2O3, and ZnO) have been studied using density functional theory. Vacancy formation energies, vacancy-vacancy interaction, and the barriers for vacancy migration are determined and rationalized in terms of the ...
متن کاملOxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.
Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of na...
متن کاملEnhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition
The ZnO nanoflowers were synthesized by reactive vapor deposition. A secondary nucleation in the stalk/leaves interface was suggested. The photoluminescence revealed that there were many oxygen vacancies in the nanoflowers. To tune the optical properties of ZnO nanoflowers, ZnO thin films with varying thicknesses were coated on the nanoflowers by atomic layer deposition, which can distinctly im...
متن کامل