Fully discrete nite element approaches fortime - dependent

نویسنده

  • Jun Zou
چکیده

A fully discrete nite element method is used to approximate the electric eld equation derived from Maxwell equations in three dimensional polyhedral domains. Optimal energy-norm error estimates are achieved for general Lipschitz polyhedral domains. Optimal L 2-norm error estimates are obtained for convex polyhedral domains. R esum e On r esout, dans un domaine poly edrique, les equations de Maxwell tem-porelles. Une m ethode par el ements nis discr ete en temps et en espace est propos ee pour calculer le champ electrique. Une estimation d'ordre optimal est obtenue pour l'erreur en norme-energie dans le cas g en eral. Pour la norme L 2 , on obtient une estimation optimale dans le cas d'un poly edre convexe. A running title: Fully discrete schemes for Maxwell equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concepts of the Finite Element Toolbox Albert

ALBERT is an Adaptive multi-Level nite element toolbox using Bisectioning reenement and Error control by Residual Techniques. Its design is based on appropriate data structures holding geometrical, nite element, and algebraic information. Using such data structures, abstract adaptive methods for stationary and time dependent problems, assembly tools for discrete systems, and dimension dependent...

متن کامل

Finite element approximations of Landau -

This paper deals with nite element approximations of the Landau-Ginzburg model for structural phase transitions in shape memory alloys. The non-linear evolutionary system of partial diierential equations is discretized in time by nite diierences and in space by very simple nite elements, that is, the linear element for the absolute temperature and the Hermite cubic element for the displacement....

متن کامل

Semi-discrete Finite Element Approximations for Linear Parabolic Integro-di erential Equations with Integrable Kernels

In this paper we consider nite element methods for general parabolic integro-diierential equations with integrable kernels. A new approach is taken, which allows us to derive optimal L p (2 p 1) error estimates and superconvergence. The main advantage of our method is that the semidiscrete nite element approximations for linear equations, with both smooth and integrable kernels, can be treated ...

متن کامل

A Nite Element Method for a Unidimensional Single-phase Nonlinear Free Boundary Problem in Groundwater Ow

Consider a unidimensional, single-phase nonlinear Stefan problem with nonlinear source and permeance terms, and a Dirichlet boundary condition depending on the free-boundary function. This problem is important in groundwater ow. By immobilizing the free-boundary with the help of a Landau type transformation, together with a homogeneous transformation dealing with the nonhomogeneous Dirichlet bo...

متن کامل

Fully Discrete Finite Element Analysis of Multiphase Flow in Groundwater Hydrology

This paper deals with development and analysis of a fully discrete nite element method for a nonlinear di erential system for describing an air water system in groundwater hydrol ogy The nonlinear system is written in a fractional ow formulation i e in terms of a saturation and a global pressure The saturation equation is approximated by a nite element method while the pressure equation is trea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996