Electronic properties of PbX₃CH₃NH₃ (X = Cl, Br, I) compounds for photovoltaic and photocatalytic applications.

نویسندگان

  • Sigismund Teunis Alexander George Melissen
  • Frédéric Labat
  • Philippe Sautet
  • Tangui Le Bahers
چکیده

Since the discovery of their excellent performance as the light-absorbing semiconducting component in photovoltaic cells, the PbX3CH3NH3 (X = I, Br, Cl) perovskites have received renewed attention. The five polymorphs stable above 200 K - the tetragonal phases for X = I, Br, Cl and the cubic phases for X = I, Br - were studied using periodic DFT calculations involving hybrid functionals (PBE0 and HSE), employing Gaussian-type orbitals as well as plane waves and including relativistic effects (spin-orbit coupling). The influence of the halogen substitution and of the crystal phase on these properties is analysed by comparing the properties obtained in this study to the experimental ones and to the theoretical ones computed using other methods. We show that an accurate treatment of these systems requires the description of dispersion forces and spin-orbit coupling. The different time scales for the electronic and vibrational components of the polarizability inspire the hypothesis that several interfacial charge transfer mechanisms are encountered in the working principle of the photovoltaic devices involving these perovskite materials. The heavy elements in the structure (Pb, I) play a major role in the high polarizability and the low effective charge carrier masses and hence in the low exciton binding energies and the high charge mobility. This systematic work on the PbX3CH3NH3 family offers to theoreticians an overview of the landscape of quantum chemical methods to enable a reasonable choice of methodology for studying these systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities.

Herein, we have developed a facile and general method for the high-yield fabrication of AgX/Ag(3)PO(4) (X = Cl, Br, I) core-shell heterostructures with an unusual rhombic dodecahedral morphology, which exhibit much higher photocatalytic activities, structural stabilities and photoelectric properties than pure Ag(3)PO(4) crystals in environment and energy applications.

متن کامل

Antibacterial and Antifungal Activity of Zinc(II) Carboxylates With/Without N-Donor Organic Ligands

The antibacterial and antifungal activity of zinc(II) carboxylates with composition Zn(RCOO)(2)*nH(2)O(R =H-, CH(3) (-), CH(3)CH(2)CH(2) (-), (CH(3))(2)CH-, XCH(2) (-), X=Cl, Br, I, n=0 or 2), [ZnX(2)(Nia(+)CH(2)COO(-))(2)](Nia=nicotinamide, X=Cl, Br, I) and [Zn(XCH(2)COO)(2)(Caf)(2)]*2H(2)O (Car=caffeine, X=Cl, Br) is studied against bacterial strains Staphylococcus aureus, Escherichia coli an...

متن کامل

Fabrication and Characterization of CH3NH3PbI3-x-yBrxCly Perovskite Solar Cells

Fabrication and characterization of CH3NH3PbI3 ́x ́yBrxCly perovskite solar cells using mesoporous TiO2 as electron transporting layer and 2,21,7,71-tetrakis-(N,N-di-4-methoxypheny lamino)-9,91-spirobifluorene as a hole-transporting layer (HTL) were performed. The purpose of the present study is to investigate role of halogen doping using iodine (I), bromine (Br) and chlorine (Cl) compounds as do...

متن کامل

Quantum chemistry studies on structures and electronic properties of the Tolazoline drug on nano structure of fullerene

Tolazoline is a non-selective competitive α-adrenergic receptor antagonist. It is a vasodilator that is used to treat spasms of peripheral blood vessels (as in acrocyanosis).Tolazoline is indicated in the treatment of persistent pulmonary hypertension in the newborn (persistent fetal circulation) when systemic arterial oxygenation cannot be maintained by supplemental oxygen and mechanical venti...

متن کامل

First-Principles Calculation of the Bulk Photovoltaic Effect in CH3NH3PbI3 and CH3NH3PbI(3-x)Cl(x).

Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of the bulk photovoltaic (PV) effect for ferroelectric photovoltaics, in CH₃NH₃PbI₃ and CH₃NH₃PbI(3-x)Cl(x) from first-principles. We find that these materials give approximately three times larger shift curr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2015