Photon activated therapy (PAT) using monochromatic Synchrotron x-rays and iron oxide nanoparticles in a mouse tumor model: feasibility study of PAT for the treatment of superficial malignancy
نویسندگان
چکیده
BACKGROUND X-rays are known to interact with metallic nanoparticles, producing photoelectric species as radiosensitizing effects, and have been exploited in vivo mainly with gold nanoparticles. The purpose of this study was to investigate the potential of sensitizing effect of iron oxide nanoparticles for photon activated therapy. METHODS X-rays photon activated therapy (PAT) was studied by treating CT26 tumor cells and CT26 tumor-bearing mice loaded with 13-nm diameter FeO NP, and irradiating them at 7.1 keV near the Fe K-edge using synchrotron x-rays radiation. Survival of cells was determined by MTT assay, and tumor regression assay was performed for in vivo model experiment. The results of PAT treated groups were compared with x-rays alone control groups. RESULTS A more significant reduction in viability and damage was observed in the FeO NP-treated irradiated cells, compared to the radiation alone group (p < 0.04). Injection of FeO NP (100 mg/kg) 30 min prior to irradiation elevated the tumor concentration of magnetite to 40 μg of Fe/g tissue, with a tumor-to-muscle ratio of 17.4. The group receiving FeO NP and radiation of 10 Gy showed 80% complete tumor regression (CTR) after 15-35 days and relapse-free survival for up to 6 months, compared to the control group, which showed growth retardation, resulting in 80% fatality. The group receiving radiation of 40 Gy showed 100% CTR in all cases irrespective of the presence of FeO NP, but CTR was achieved earlier in the PAT-treated group compared with the radiation alone group. CONCLUSIONS An iron oxide nanoparticle enhanced therapeutic effect with relatively low tissue concentration of iron and 10 Gy of monochromatic X-rays. Since 7.1 keV X-rays is attenuated very sharply in the tissue, FeO NP-PAT may have promise as a potent treatment option for superficial malignancies in the skin, like chest wall recurrence of breast cancer.
منابع مشابه
Energy Optimization And Calculation Of Dose Absorption Enhancement Factor In Photon Activation Therapy
Introduction: Secondary radiation such as photoelectrons, Auger electrons and characteristic radiations cause a local boost in dose for a tumor when irradiated with an external X-ray beam after being loaded with elements capable of activating the tumor, e.g.; I and Gd. Materials and Methods: In this investigation, the MCNPX code was used for simulation and calculation of dose enhancement facto...
متن کاملA Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays
Background: To enhance the dose to tumor, the use of high atomic number elements has been proposed.Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in tumor when the tumor is irradiated by typical monoenergetic X-ray beams by considering homogeneous and inhomogeneous distributions of gold nanoparticles (GNPs) in the tumor.Method...
متن کاملConsider potential of gold nanoparticles with proton therapy compared with KV and MEV X-ray therapy.
Introduction: Many study shown the effectiveness dose enhancement with gold nanoparticles (GNPs), especially with low-energy x-rays. Recently, proton beam radiation therapy (PBRT) has attention as a treatment for tumors. The advantage in PBRT, which releases high dose at the controllable Bragg peak position that localized for Au target and the released dose increased in depth....
متن کاملSynchrotron-based photon activation therapy effect on cisplatin pre-treated human glioma stem cells.
BACKGROUND Glioblastoma multiforme (GBM) is one of the deadliest cancers characterized by very limited sensitivity to chemo- and/or radiotherapy. The presence of GBM stem-like cells in the tumor might be relevant for GBM treatment resistance. AIM To provide a proof-of-concept of the efficacy of photon activation therapy (PAT) using monochromatic synchrotron radiation (SR), in killing GBM stem...
متن کاملA Review of the Applications of Synchrotron Radiation in Archaeological Sciences
The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...
متن کامل