Thin and dressed Polyakov loops from spectral sums of lattice differential operators

نویسندگان

  • Christian Hagen
  • Falk Bruckmann
چکیده

We represent thin and dressed Polyakov loops as spectral sums of eigenvalues of differential operators on the lattice. For that purpose we calculate complete sets of eigenvalues of the staggered Dirac and the covariant Laplace operator for several temporal boundary conditions. The spectra from different boundary conditions can be combined such that they represent single (thin) Polyakov loops, or a collection of loops (dressed Polyakov loops). We analyze the role of the eigenvalues in the spectral sums below and above the critical temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static quark-antiquark potential and Dirac eigenvector correlators

We represent the Polyakov loop correlator as a spectral sum of correlators of eigenvectors of the lattice Dirac operator. This spectral representation is studied numerically using quenched SU(3) configurations below and above the deconfinement temperature. We analyze whether the individual Dirac eigenvector correlators differ in the confined and deconfined phases. The decay properties of the no...

متن کامل

Dressed Polyakov loops and center symmetry from Dirac spectra

We construct a novel observable for finite temperature QCD that relates confinement and chi-ral symmetry. It uses phases as boundary conditions for the fermions. We discuss numerical and analytical aspects of this observable, like its spectral behavior below and above the critical temperature, as well as the connection to chiral condensate and center symmetry.

متن کامل

The Sums and Products of Commuting AC-Operators

Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.  

متن کامل

Dual condensate, dressed Polyakov loops and center symmetry from Dirac spectra

We construct a novel observable for finite temperature QCD that relates confinement and chi-ral symmetry. It uses phases as boundary conditions for the fermions. We discuss numerical and analytical aspects of this observable, like its spectral behavior below and above the critical temperature, as well as the connection to chiral condensate, center symmetry and the canonical ensemble.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007