Rainfall-Runoff Correlation with Particle Swarm Optimization Algorithm

نویسنده

  • Kwok-Wing Chau
چکیده

A reliable correlation between rainfall-runoff enables the local authority to gain more amble time for formulation of appropriate decision making, issuance of an advanced flood forewarning, and execution of earlier evacuation measures. Since a variety of existing methods such as rainfall-runoff modeling or statistical techniques involve exogenous input and different assumptions, artificial neural networks have the potential to be a cost-effective solution, provided that their drawbacks can be overcome. Usual problems in the training with gradient algorithms are the slow convergence and easy entrapment in a local minimum. This paper presents a particle swarm optimization model for training perceptrons. It is applied to forecasting real-time runoffs in Siu Lek Yuen of Hong Kong with different lead times on the basis of the upstream gauging stations or at the specific station. It is demonstrated that the results are both more accurate and faster to attain, when compared with the benchmark backward propagation algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle swarm optimization feedforward neural network for modeling runoff

The rainfall-runoff relationship is one of the most complex hydrological phenomena. In recent years, hydrologists have successfully applied backpropagation neural network as a tool to model various nonlinear hydrological processes because of its ability to generalize patterns in imprecise or noisy and ambiguous input and output data sets. However, the backpropagation neural network convergence ...

متن کامل

Particle Swarm Optimization Training Algorithm for ANNs in Stage Prediction of Shing Mun River

An accurate water stage prediction allows the pertinent authority to issue a forewarning of the impending flood and to implement early evacuation measures when required. Existing methods including rainfall-runoff modeling or statistical techniques entail exogenous input together with a number of assumptions. The use of artificial neural networks (ANN) has been shown to be a cost-effective techn...

متن کامل

River Stage Forecasting with Particle Swarm Optimization

An accurate water stage prediction allows the pertinent authority to issue a forewarning of the impending flood and to implement early evacuation measures when required. Existing methods including rainfall-runoff modeling or statistical techniques entail exogenous input together with a number of assumptions. The use of artificial neural networks has been shown to be a costeffective technique. B...

متن کامل

Automatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models

Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...

متن کامل

Diversified Particle Swarm Optimization for Hybrid Flowshop Scheduling

The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004