A bijection between noncrossing and nonnesting partitions of types A and B

نویسنده

  • RICARDO MAMEDE
چکیده

The total number of noncrossing partitions of type Ψ is the nth Catalan number 1 n+1 (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bijection between noncrossing and nonnesting partitions of types A, B and C

The total number of noncrossing partitions of type Ψ is equal to the nth Catalan number 1 n+1 ( 2n n ) when Ψ = An−1, and to the corresponding binomial coefficient ( 2n n ) when Ψ = Bn or Cn. These numbers coincide with the corresponding number of nonnesting partitions. For type A, there are several bijective proofs of this equality; in particular, the intuitive map, which locally converts each...

متن کامل

Bijections between noncrossing and nonnesting partitions for classical reflection groups

We present type preserving bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types B, C and D are new in the literature. To find them we define, for every type, sets of statistics that are in bijection with noncrossing and nonnesting partitions, and this correspon...

متن کامل

A bijection between noncrossing and nonnesting partitions for classical reflection groups

We present an elementary type preserving bijection between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis.

متن کامل

On Noncrossing and Nonnesting Partitions of Type D Alessandro Conflitti and Ricardo Mamede

We present an explicit bijection between noncrossing and nonnesting partitions of Coxeter systems of type D which preserves openers, closers and transients. 1. Overview The lattice of set partitions of a set of n elements can be interpreted as the intersection lattice for the hyperplane arragement corresponding to a root system of type An−1, i.e. the symmetric group of n objects, Sn. In particu...

متن کامل

On Noncrossing and Nonnesting Partitions for Classical Reflection Groups

The number of noncrossing partitions of {1, 2, . . . , n} with fixed block sizes has a simple closed form, given by Kreweras, and coincides with the corresponding number for nonnesting partitions. We show that a similar statement is true for the analogues of such partitions for root systems B and C, defined recently by Reiner in the noncrossing case and Postnikov in the nonnesting case. Some of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009