CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet
نویسندگان
چکیده
One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim). Keywords—Computed Tomography (CT), noise reduction, curve-let, contour-let, Signal to Noise Peak-Peak Ratio (PSNR), Structure Similarity (Ssim), Absorbed Dose to Patient (ADP).
منابع مشابه
An Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملMedical Image Denoising Using a Nonlinear Thresholding Function in Nonsubsampled Contourlet Transform
This paper proposes a new method of medical image denoising based on a new nonlinear thresholding function in Nonsubsampled Contourlet Transform (NSCT) domain. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image ...
متن کاملComparison of Real and Complex-valued Versions of Wavelet Transform, Curvelet Transform and Ridgelet Transform for Medical Image Denoising
In this study; medical images were denoising with multiresolution analyses using real-valued wavelet transform (RVWT), complex-valued wavelet transform (CVWT), ridgelet transform (RT), real-valued first-generation curvelet transform (RVFG CT), real-valued second-generation curvelet transform (RVSG CT), complex-valued second-generation curvelet transform (CVSG CT) and results are compared. First...
متن کاملDenoising of Document Images using Discrete Curvelet Transform for OCR Applications
In this paper, a denoising and binarization scheme of document images corrupted by white Gaussian noise and Impulse noise is presented using Curvelet Transform. The ability of sparse representation and edge preservation of Curvelet transform is utilized. Impulse noise gets added during document scanning or after binarization of scanned document images. White Gaussian noise corrupts the document...
متن کاملImage Denoising using Uniform Curvelet Transform and Complex Gaussian Scale Mixture
In this project, a modified version of the curvelet transform is proposed for image denoising. We introduced the complex Gaussian scale mixture (CGSM) for modeling the distribution of complex curvelet coefficients. The statistical model is then used to obtain the denoised coefficients from the noisy image decomposition by Bayes least squares estimator. Performance of the denoised images using t...
متن کامل