DSK: k-mer counting with very low memory usage
نویسندگان
چکیده
SUMMARY Counting all the k-mers (substrings of length k) in DNA/RNA sequencing reads is the preliminary step of many bioinformatics applications. However, state of the art k-mer counting methods require that a large data structure resides in memory. Such structure typically grows with the number of distinct k-mers to count. We present a new streaming algorithm for k-mer counting, called DSK (disk streaming of k-mers), which only requires a fixed user-defined amount of memory and disk space. This approach realizes a memory, time and disk trade-off. The multi-set of all k-mers present in the reads is partitioned, and partitions are saved to disk. Then, each partition is separately loaded in memory in a temporary hash table. The k-mer counts are returned by traversing each hash table. Low-abundance k-mers are optionally filtered. DSK is the first approach that is able to count all the 27-mers of a human genome dataset using only 4.0 GB of memory and moderate disk space (160 GB), in 17.9 h. DSK can replace a popular k-mer counting software (Jellyfish) on small-memory servers. AVAILABILITY http://minia.genouest.org/dsk
منابع مشابه
These Are Not the K-mers You Are Looking For: Efficient Online K-mer Counting Using a Probabilistic Data Structure
K-mer abundance analysis is widely used for many purposes in nucleotide sequence analysis, including data preprocessing for de novo assembly, repeat detection, and sequencing coverage estimation. We present the khmer software package for fast and memory efficient online counting of k-mers in sequencing data sets. Unlike previous methods based on data structures such as hash tables, suffix array...
متن کاملMSPKmerCounter: A Fast and Memory Efficient Approach for K-mer Counting
Motivation: A major challenge in next-generation genome sequencing (NGS) is to assemble massive overlapping short reads that are randomly sampled from DNA fragments. To complete assembling, one needs to finish a fundamental task in many leading assembly algorithms: counting the number of occurrences of k-mers (length-k substrings in sequences). The counting results are critical for many compone...
متن کاملSqueakr: an exact and approximate k-mer counting system
Motivation k-mer-based algorithms have become increasingly popular in the processing of high-throughput sequencing data. These algorithms span the gamut of the analysis pipeline from k-mer counting (e.g. for estimating assembly parameters), to error correction, genome and transcriptome assembly, and even transcript quantification. Yet, these tasks often use very different k-mer representations ...
متن کاملA fast, lock-free approach for efficient parallel counting of occurrences of k-mers
MOTIVATION Counting the number of occurrences of every k-mer (substring of length k) in a long string is a central subproblem in many applications, including genome assembly, error correction of sequencing reads, fast multiple sequence alignment and repeat detection. Recently, the deep sequence coverage generated by next-generation sequencing technologies has caused the amount of sequence to be...
متن کاملSpace-efficient K-mer Algorithm for Generalised Suffix Tree
Suffix trees have emerged to be very fast for pattern searching yielding O (m) time, where m is the pattern size. Unfortunately their high memory requirements make it impractical to work with huge amounts of data. We present a memory efficient algorithm of a generalized suffix tree which reduces the space size by a factor of 10 when the size of the pattern is known beforehand. Experiments on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2013