LINEAR RELATIONS AMONG HOLOMORPHIC QUADRATIC DIFFERENTIALS AND INDUCED SIEGEL’S METRIC ON Mg MARCO MATONE AND ROBERTO VOLPATO

نویسنده

  • ROBERTO VOLPATO
چکیده

We derive the explicit form of the (g − 2)(g − 3)/2 linearly independent relations among the products of pairs in a basis of holomorphic abelian differentials in the case of canonical curves of genus g ≥ 4. It turns out that Petri’s relations remarkably match in determinantal conditions. We explicitly express the volume form on the moduli space M̂g of canonical curves induced by the Siegel metric, in terms of the period Riemann matrix only. By the Kodaira-Spencer map, the relations lead to an expression of the induced Siegel metric on M̂g, that corresponds to the square of the Bergman reproducing kernel. A key role is played by distinguished bases for holomorphic differentials whose properties also lead to an immediate derivation of Fay’s trisecant identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear relations among holomorphic quadratic differentials and induced Siegel’s metric on Mg

We derive the (g − 2)(g − 3)/2 linearly independent relations among the products of pairs in a basis of holomorphic abelian differentials in the case of compact non-hyperelliptic Riemann surfaces of genus g ≥ 4. By the Kodaira-Spencer map this leads to the modular invariant metric on the moduli space induced by the Siegel metric.

متن کامل

Higher Genus Superstring Amplitudes From the Geometry of Moduli Space

We show that the higher genus 4-point superstring amplitude is strongly constrained by the geometry of moduli space of Riemann surfaces. A detailed analysis leads to a natural proposal which satisfies several conditions. The result is based on the recently derived Siegel induced metric on the moduli space of Riemann surfaces and on combinatorial products of determinants of holomorphic abelian d...

متن کامل

The Singular Locus of the Theta Divisor and Quadrics through a Canonical Curve

A section K on a genus g canonical curve C is identified as the key tool to prove new results on the geometry of the singular locus Θ s of the theta divisor. The K divisor is characterized by the condition of linear dependence of a set of quadrics containing C and naturally associated to a degree g effective divisor on C. K counts the number of intersections of special varieties on the Jacobian...

متن کامل

Gains from diversification on convex combinations: A majorization and stochastic dominance approach

By incorporating both majorization theory and stochastic dominance theory, this paper presents a general theory and a unifying framework for determining the diversification preferences of risk-averse investors and conditions under which they would unanimously judge a particular asset to be superior. In particular, we develop a theory for comparing the preferences of different convex combination...

متن کامل

Improved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant.

BACKGROUND Adjuvants are used to increase the immunogenicity of new generation vaccines, especially those based on recombinant proteins. Despite immunostimulatory properties, the use of bacterial lipopolysaccharide (LPS) as an adjuvant has been hampered due to its toxicity and pyrogenicity. Brucella abortus LPS is less toxic and has no pyrogenic properties compared to LPS from other gram negati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008