On the Size of the Sets of Gradients of Bump Functions and Starlike Bodies on the Hilbert Space
نویسنده
چکیده
We study the size of the sets of gradients of bump functions on the Hilbert space `2, and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in `2 can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space `2 can be uniformly approximated by C 1 smooth Lipschitz functions ψ so that the cones generated by the ranges of its derivatives ψ(`2) have empty interior. This implies that there are C smooth Lipschitz bumps in `2 so that the cones generated by their sets of gradients have empty interior. On the other hand, we construct C-smooth bounded starlike bodies A ⊂ `2, which approximate the unit ball, so that the cones generated by the hyperplanes which are tangent to A have empty interior as well. We also explain why this is the best answer to the above questions that one can expect. RÉSUMÉ. On étudie la taille de l’ensemble de valeurs du gradient d’une fonction lisse, non identiquement nulle et à support borné dans l’espace de Hilbert `2, et aussi celle de l’ensemble des hyperplans tangents à un corps étoilé dans `2. On montre que ces ensembles peuvent être assez petits. D’un côté, la norme de l’espace de Hilbert est approximée uniformement par des fonctions de classe C et Lipschitziennes ψ telles que les cônes engendrés par les ensembles de valeurs des dérivées ψ(`2) sont d’intérieur vide. Cela entrâıne qu’il y a des fonctions bosses de classe C et Lipschitziennes dont les cônes engendrés par les valeurs des gradients sont d’intérieur vide. D’un autre côté, on construit des corps étoilés bornés lisses de classe C et Lipschitziens dont les cônes engendrés par les hyperplans tangents sont d’intérieur vide. On montre aussi pourquoi celle-ci est la meuillère réponse à ces questions que l’on puisse espérer.
منابع مشابه
Rolle’s Theorem Is Either False or Trivial in Infinite-dimensional Banach Spaces
We prove the following new characterization of C (Lipschitz) smoothness in Banach spaces. An infinite-dimensional Banach space X has a C smooth (Lipschitz) bump function if and only if it has another C smooth (Lipschitz) bump function f such that f ′(x) 6= 0 for every point x in the interior of the support of f (that is, f does not satisfy Rolle’s theorem). Moreover, the support of this bump ca...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملFekete-Szeg"o problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination
In this paper, we define new subclasses ${S}^{*}_{q}(alpha,Phi),$ ${M}_{q}(alpha,Phi)$ and ${L}_{q}(alpha,Phi)$ of analytic functions in the space of logistic sigmoid functions based on quasi--subordination and determine the initial coefficient estimates $|a_2|$ and $|a_3|$ and also determine the relevant connection to the classical Fekete--Szeg"o inequalities. Further, we discuss the improved ...
متن کاملGeometrical and Topological Properties of Bumps and Starlike Bodies in Banach Spaces
We make a survey of recent results on the geometrical properties of smooth bump functions and the geometrical and topological properties of starlike bodies in Banach spaces. We try to stress the interplay between infinitedimensional topology and nonlinear functional analysis by relating questions about topological and geometrical properties of starlike bodies to other interesting problems on no...
متن کاملSupercyclic tuples of the adjoint weighted composition operators on Hilbert spaces
We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^* , C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic.
متن کامل