Query-Biased Preview over Outsourced and Encrypted Data

نویسندگان

  • Ningduo Peng
  • Guangchun Luo
  • Ke Qin
  • Aiguo Chen
چکیده

For both convenience and security, more and more users encrypt their sensitive data before outsourcing it to a third party such as cloud storage service. However, searching for the desired documents becomes problematic since it is costly to download and decrypt each possibly needed document to check if it contains the desired content. An informative query-biased preview feature, as applied in modern search engine, could help the users to learn about the content without downloading the entire document. However, when the data are encrypted, securely extracting a keyword-in-context snippet from the data as a preview becomes a challenge. Based on private information retrieval protocol and the core concept of searchable encryption, we propose a single-server and two-round solution to securely obtain a query-biased snippet over the encrypted data from the server. We achieve this novel result by making a document (plaintext) previewable under any cryptosystem and constructing a secure index to support dynamic computation for a best matched snippet when queried by some keywords. For each document, the scheme has O(d) storage complexity and O(log(d/s) + s + d/s) communication complexity, where d is the document size and s is the snippet length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Private Key based query on encrypted data

Nowadays, users of information systems have inclination to use a central server to decrease data transferring and maintenance costs. Since such a system is not so trustworthy, users' data usually upkeeps encrypted. However, encryption is not a nostrum for security problems and cannot guarantee the data security. In other words, there are some techniques that can endanger security of encrypted d...

متن کامل

Lightweight and Secure Two-Party Range Queries over Outsourced Encrypted Databases

With the many benefits of cloud computing, an entity may want to outsource its data and their related analytics tasks to a cloud. When data are sensitive, it is in the interest of the entity to outsource encrypted data to the cloud; however, this limits the types of operations that can be performed on the cloud side. Especially, evaluating queries over the encrypted data stored on the cloud wit...

متن کامل

Secure Top-k Query Processing on Encrypted Databases

Privacy concerns in outsourced cloud databases have become more and more important recentlyand many efficient and scalable query processing methods over encrypted data have been proposed.However, there is very limited work on how to securely process top-k ranking queries over encrypteddatabases in the cloud. In this paper, we focus exactly on this problem: secure and efficient proce...

متن کامل

SQL-Based Fuzzy Query Mechanism Over Encrypted Database

With the development of cloud computing and big data, data privacy protection has become an urgent problem to solve. Data encryption is the most effective way to protect privacy; however, it will change the data format and result in: 1. database structure and application software will be changed; 2. structured query language (SQL) operations cannot work properly, especially in SQL-based fuzzy q...

متن کامل

Sorting and Searching Behind the Curtain: Private Outsourced Sort and Frequency-Based Ranking of Search Results Over Encrypted Data

We study the problem of private outsourced sorting of encrypted data. We start by proposing a novel sorting protocol that allows a user to outsource his data to a cloud server in an encrypted form and then request the server to perform computations on this data and sort the result. To perform the sorting the server is assisted by a secure coprocessor with minimal computational and memory resour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013