Covariance of cross-correlations: towards efficient measures for large-scale structure
نویسنده
چکیده
We study the covariance of the cross-power spectrum of different tracers for the largescale structure. We develop the counts-in-cells framework for the multi-tracer approach, and use this to derive expressions for the full non-Gaussian covariance matrix. We show, that for the usual auto-power statistic, besides the off-diagonal covariance generated through gravitational mode-coupling, the discreteness of the tracers and their associated sampling distribution can generate strong off-diagonal covariance, and that this becomes the dominant source of covariance as k ≫ kf = 2π/L. On comparison with the derived expressions for the cross-power covariance, we show that the off-diagonal terms can be suppressed, if one cross-correlates a high tracer-density sample with a low one. Taking the effective estimator efficiency to be proportional to the signal-to-noise ratio (S/N ), we show that, to probe clustering as a function of physical properties of the sample, i.e. cluster mass or galaxy luminosity, then the cross-power approach can out perform the auto-power one by factors of a few. We confront the theory with measurements of the mass-mass, halo-mass, and halo-halo power spectra from a large ensemble of N–body simulations. We show that there is a significant S/N advantage to be gained from using the cross-power approach when studying the bias of rare haloes. The analysis is repeated in configuration space and again S/N improvement is found. We estimate the covariance matrix for these samples, and find strong off-diagonal contributions. The covariance depends on halo mass, with higher mass samples having stronger covariance. In agreement with theory, we show that the covariance is suppressed for the cross-power. This work points the way towards improved estimators for studying the clustering of tracers as a function of their physical properties.
منابع مشابه
Covariance Approximation for Large Multivariate Spatial Datasets with an Application to Multiple Climate Model Errors
This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a non-separable and non-stationary cross-covariance structure. We also present a covariance approximation approach to facilitat...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملConservative Sample Size Determination for Repeated Measures Analysis of Covariance.
In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be cal...
متن کاملA Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...
متن کاملA New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009