Novel proteins from proteomic analysis of the trunk disease fungus Lasiodiplodia theobromae (Botryosphaeriaceae)
نویسندگان
چکیده
Many basic science questions remain regarding protein functions in the pathogen: host interaction, especially in the trunk disease fungi family, the Botryosphaeriaceae, which are a global problem for economically important plants, especially fruiting trees. Proteomics is a highly useful technology for studying protein expression and for discovering novel proteins in unsequenced and poorly annotated organisms. Current fungal proteomics approaches involve 2D SDS-PAGE and extensive, complex, protein extraction methodologies. In this work, a modified Folch extraction was applied to protein extraction to perform both de novo peptide sequencing and peptide fragmentation analysis/protein identification of the plant and human fungal pathogen Lasiodiplodia theobromae. Both bioinformatics approaches yielded novel peptide sequences from proteins produced by L. theobromae in the presence of exogenous triglycerides and glucose. These proteins and the functions they may possess could be targeted for further functional characterization and validation efforts, due to their potential uses in biotechnology and as new paradigms for understanding fungal biochemistry, such as the finding of allergenic enolases, as well as various novel proteases, including zinc metalloproteinases homologous to those found in snake venom. This work contributes to genomic annotation efforts, which, hand in hand with genomic sequencing, will help improve fungal bioinformatics databases for future studies of Botryosphaeriaceae. All data, including raw data, are available via the ProteomeXchange data repository with identifier PXD005283. This is the first study of its kind in Botryosphaeriaceae.
منابع مشابه
Data from proteome analysis of Lasiodiplodia theobromae (Botryosphaeriaceae)
Trunk disease fungi are a global problem affecting many economically important fruiting trees. The Botryosphaeriaceae are a family of trunk disease fungi that require detailed biochemical characterization in order to gain insight into their pathogenicity. The application of a modified Folch extraction to protein extraction from the Botryosphaeriaceae Lasiodiplodia theobromae generated an unprec...
متن کاملInvasive Everywhere? Phylogeographic Analysis of the Globally Distributed Tree Pathogen Lasiodiplodia theobromae
Fungi in the Botryosphaeriaceae are important plant pathogens that persist endophytically in infected plant hosts. Lasiodiplodia theobromae is a prominent species in this family that infects numerous plants in tropical and subtropical areas. We characterized a collection of 255 isolates of L. theobromae from 52 plants and from many parts of the world to determine the global genetic structure an...
متن کاملCaulicolous Botryosphaeriales from Thailand
Members of Botryosphaeriales are commonly encountered as endophytes or pathogens of various plant hosts. The Botryosphaeriaceae represents the predominant family within this order, containing numerous species associated with canker and dieback disease on a wide range of woody hosts. During the course of routine surveys from various plant hosts in Thailand, numerous isolates of Botryosphaeriacea...
متن کاملNovel Cyclohexene Compound from Lasiodiplodia theobromae IFO 31059.
A novel cyclohexene compound (1), which is structurally related to theobroxide (2), was isolated from a culture filtrate of the fungus, Lasiodiplodia theobromae IFO 31059. The potato micro-tuber-inducing activity of this compound was observed at a concentration of 10(-3) M in the medium, whereas theobroxide (2) showed its activity at 10(-5) M.
متن کاملBiosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae.
Jasmonic acid (JA) is a plant hormone that plays an important role in a wide variety of plant physiological processes. The plant pathogenic fungus, Lasiodiplodia theobromae also produces JA; however, its biosynthesis in this fungus has yet to be explored. Administration of [1-(13)C] and [2-(13)C] NaOAc into L. theobromae established that JA in this fungus originates from a fatty acid synthetic ...
متن کامل