Pongamia pinnata seed cake: a promising and inexpensive substrate for production of protease and lipase from Bacillus pumilus SG2 on solid-state fermentation.

نویسندگان

  • R Sangeetha
  • A Geetha
  • I Arulpandi
چکیده

The production of a protease and a lipase from Bacillus pumilus SG2 on solid-state fermentation using Pongamia pinnata seed cake as substrate was studied. The seed cake was proved to be a promising substrate for the bacterial growth and the enzyme production. The initial pH, incubation time and moisture content were optimized to achieve maximal enzyme production. Maximum protease production was observed at 72 h and that of the lipase at 96 h of incubation. The production of protease (9840 U/g DM) and lipase (1974 U/g DM) were maximum at pH 7.0 and at 60% moisture content. Triton X-100 (1%) was proved to be an effective extractant for the enzymes and their optimal activity was observed at alkaline pH and at 60 C. The molecular mass of the protease and lipase was 24 and 40 kDa, respectively. Both the enzymes were found to be stable detergent additives. The study demonstrated that inexpensive and easily available Pongamia seed cake could be used for production of industrially important enzymes, such as protease and lipase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of surface optimization for the enhanced production of alkaline protease isolated from Bacillus sp. with bean husk as a new substrate

Optimization of the fermentation medium for maximum alkaline protease production was carried out. Fifteen positive isolates were examined for their extent of alkaline protease production. The most potent producer was identified as Bacillus sp. The solid substrate screening showed that the combination of wheat straw and bean husk was the best one. The initial screening by using Plackett–Burman’s...

متن کامل

Concomitant production, partial purification and characterization of a serine protease and a proteolysis-resistant metallolipase from Bacillus pumilus SG2.

Our objective was to investigate the concomitant production of protease and lipase by a bacterial strain. A promising bacterial strain was isolated from a food-processing industrial effluent, which can produce both protease and lipase. The isolate was characterized by sequencing the 16S rRNA gene. The PCR amplified gene was subjected to analysis by BLAST to ascertain the genetic relatedness of ...

متن کامل

A comparison on Lipase Production from Soybean meal and Sugarcane Bagasse in Solid State Fermentation using Rhizopus oryzae

In this study, solid-state fermentation of two types of agricultural residues/products for lipase production in a tray-bioreactor was investigated. Rhizopus oryzae was used as a potential fungus strain and two types of agricultural residues including soybean meal and sugarcane bagasse were utilized as substrate. Fermentation was carried out in two different operational conditions: one with cont...

متن کامل

Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2

Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant li...

متن کامل

Phorbol Esters Degradation and Enzyme Production by Bacillus using Jatropha Seed Cake as Substrate

The purposes of this research were to evaluate phorbol esters (PEs) degradation rate and enzyme production yield using submerged fermentation (SMF) as screening method and further using solid-state fermentation (SSF) as pilot scale-up study. SMF was carried out with 20 g seed cake in 100 ml minimal salt medium for 7 days incubation, while SSF was done with 20 g seed cake at 50% moisture content...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Indian journal of biochemistry & biophysics

دوره 48 6  شماره 

صفحات  -

تاریخ انتشار 2011