Site-Directed Mutations of Thermostable Direct Hemolysin from Grimontia hollisae Alter Its Arrhenius Effect and Biophysical Properties

نویسندگان

  • Yu-Kuo Wang
  • Sheng-Cih Huang
  • Yi-Fang Wu
  • Yu-Ching Chen
  • Yen-Ling Lin
  • Manoswini Nayak
  • Yan Ren Lin
  • Wen-Hung Chen
  • Yi-Rong Chiu
  • Thomas Tien-Hsiung Li
  • Bo-Sou Yeh
  • Tung-Kung Wu
چکیده

Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 °C but is reactivated by additional heating above 80 °C. This study investigated individual or collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type (Gh-rTDH(WT)) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius effect could be detected from the Gh-rTDH(Y53H/T59I) and Gh-rTDH(T59I/S63T) double-mutants and the Gh-rTDH(Y53H/T59I/S63T) triple-mutant. Differential scanning calorimetry results showed that the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower endothermic transition temperatures, respectively, than that of the Gh-rTDH(WT). Circular dichroism measurements of Gh-rTDH(WT) and Gh-rTDH(mut) showed a conspicuous change from a β-sheet to α-helix structure around the endothermic transition temperature. Consistent with the observation is the conformational change of the proteins from native globular form into fibrillar form, as determined by Congo red experiments and transmission electron microscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential antitumor therapeutic application of Grimontia hollisae thermostable direct hemolysin mutants

We report on the preparation of a new type of immunotoxin by conjugation of an epidermal growth factor receptor (EGFR)-binding peptide and an R46E mutation of thermostable direct hemolysin from Grimontia hollisae, (Gh-TDH(R) (46E) /EB). The hybrid immunotoxin was purified to homogeneity and showed a single band with slight slower mobility than that of Gh-TDH(R) (46E) . Cytotoxicity assay of Gh-...

متن کامل

The Thermostable Direct Hemolysin from Grimontia hollisae Causes Acute Hepatotoxicity In Vitro and In Vivo

BACKGROUND G. hollisae thermostable direct hemolysin (Gh-TDH) is produced by most strains of G. hollisae. This toxin has been reported to be absorbed in the intestines in humans. Secondary liver injury might be caused by venous return of the toxin through the portal system. We aimed to firstly analyze the in vitro and in vivo hepatotoxicity of Gh-TDH. METHODS Liver cells (primary human non-ca...

متن کامل

Purification, crystallization and preliminary X-ray analysis of a thermostable direct haemolysin from Grimontia hollisae.

Vibrio hollisae, a halophilic species recently reclassified as Grimontia hollisae, is a causative agent of gastroenteritis and septicaemia. One important pathogenic Vibrio factor, thermostable direct haemolysin (TDH), has been purified and crystallized in two crystal forms using the vapour-diffusion method. The crystals belonged to an orthorhombic space group, with unit-cell parameters a = 104....

متن کامل

Isolation from a coastal fish of Vibrio hollisae capable of producing a hemolysin similar to the thermostable direct hemolysin of Vibrio parahaemolyticus.

A vibrio isolated from the intestine of a coastal fish was identified as Vibrio hollisae by its biochemical characteristics. The isolate reacted with the gene probe for the thermostable direct hemolysin of Vibrio parahaemolyticus. The hemolysin produced by the isolate from the fish had traits identical to those of the thermostable direct hemolysin-like hemolysin produced by a clinical strain of...

متن کامل

Severe gastroenteritis and hypovolemic shock caused by Grimontia (Vibrio) hollisae infection.

Vibrio hollisae is a halophilic species that was recently reclassified as Grimontia hollisae. This organism is known to cause moderate to severe cases of gastroenteritis. We report a case of an individual who suffered a more severe form of this disease, presenting with profound hypotension and acute renal failure, secondary to hypovolemic shock.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011