Correction: Mechanics and Composition of Middle Cerebral Arteries from Simulated Microgravity Rats with and without 1-h/d –Gx Gravitation

نویسندگان

  • Jiu-Hua Cheng
  • Li-Fan Zhang
  • Fang Gao
  • Yun-Gang Bai
  • Marco Boscolo
  • Xiao-Feng Huang
  • Xiang Zhang
چکیده

BACKGROUND To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG) in preventing this adverse effect. METHODOLOGY/PRINCIPAL FINDINGS Middle cerebral arteries (MCAs) were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect), S+D (SUS plus 1-h/d -Gx gravitation by normal standing to simulate IAG), and CON (control) rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2). During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats. CONCLUSIONS Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G environment. Alleviating of active stiffening and increasing of distensibility of cerebral resistance arteries may underlie the countermeasure effectiveness of IAG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrasting effects of simulated microgravity with and without daily -Gx gravitation on structure and function of cerebral and mesenteric small arteries in rats.

This study was designed to test the hypothesis that a 28-day tail suspension (SUS) could induce hypertrophy and enhanced myogenic and vasoconstrictor reactivity in middle cerebral arteries (MCAs), whereas atrophy and decreased myogenic and vasoconstrictor responses in mesenteric third-order arterioles (MSAs). Also, in addition to the functional enhancement in MCAs, structural changes in both ki...

متن کامل

Differential regulation of L-type Ca channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing

Xue J-H, Zhang L-F, Ma J, Xie M-J. Differential regulation of L-type Ca channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. Am J Physiol Heart Circ Physiol 293: H691–H701, 2007. First published March 9, 2007; doi:10.1152/ajpheart.01229.2006.—This study was designed to clarify whether simulated microgravity can induce differential c...

متن کامل

Effectiveness of intermittent -Gx gravitation in preventing deconditioning due to simulated microgravity.

This study was designed to compare the effectiveness of daily short-duration -Gx gravity exposure in preventing adverse changes in skeletal and cardiac muscles and bone due to simulated microgravity. Tail suspension for 28 days was used to simulate microgravity-induced deconditioning effects. Daily standing (STD) at 1 G for 1, 2, or 4 h/day or centrifugation (CEN) at 1.5 or 2.6 G for 1 h/day wa...

متن کامل

Differential activation of potassium channels in cerebral and hindquarter arteries of rats during simulated microgravity.

The purpose of this study was to test the hypothesis that differential autoregulation of cerebral and hindquarter arteries during simulated microgravity is mediated or modulated by differential activation of K(+) channels in vascular smooth muscle cells (VSMCs) of arteries in different anatomic regions. Sprague-Dawley rats were subjected to 1- and 4-wk tail suspension to simulate the cardiovasc...

متن کامل

Difference in blood volume distribution between upright humans and standing quadrupeds.

TO THE EDITOR: After two decades of animal studies on vascular adaptation to microgravity using the rat analog (for review, see Ref. 3), it is gratifying to note the recently published findings on space-flown mice by Sofronova and coworkers (1). They demonstrate that both vasoconstrictor and vasodilator properties are attenuated in basilar arteries (BA) isolated from the mice flown 30 days on a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014