T-Stability of Picard Iteration in Metric Spaces

نویسندگان

  • Yuan Qing
  • B. E. Rhoades
چکیده

Let X, d be a complete metric space and T a self-map of X. Let xn 1 f T, xn be some iteration procedure. Suppose that F T , the fixed point set of T , is nonempty and that xn converges to a point q ∈ F T . Let {yn} ⊂ X and define n d yn 1, f T, yn . If lim n 0 implies that limyn q, then the iteration procedure xn 1 f T, xn is said to be T -stable. Without loss of generality, we may assume that {yn} is bounded, for if {yn} is not bounded, then it cannot possibly converge. If these conditions hold for xn 1 Txn, that is, Picard’s iteration, then we will say that Picard’s iteration is T -stable. We will obtain sufficient conditions that Picard’s iteration is T -stable for an arbitrary self-map, and then demonstrate that a number of contractive conditions are Picard T -stable. We will need the following lemma from 1 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Iteration Procedures in Metric Spaces which Generalize a Picard-Type Iteration

This paper investigates the stability of iteration procedures defined by continuous functions acting on self-maps in continuous metric spaces. Some of the obtained results extend the contraction principle to the use of altering-distance functions and extended altering-distance functions, the last ones being piecewise continuous. The conditions for themaps to be contractive for the achievement o...

متن کامل

On T-Stability of Picard Iteration in Cone Metric Spaces

i P is closed, nonempty, and P / {0}, ii a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply that ax by ∈ P, iii x ∈ P and −x ∈ P imply that x 0. The space E can be partially ordered by the cone P ⊂ E; by defining, x ≤ y if and only if y − x ∈ P . Also, we write x y if y − x ∈ int P , where int P denotes the interior of P . A cone P is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y impli...

متن کامل

Generalized multivalued $F$-contractions on non-complete metric spaces

In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...

متن کامل

Some Convergence Theorems of a Sequence in Complete Metric Spaces and Its Applications

In 1916, Tricomi 1 introduced originally the concept of quasi-nonexpansive for real functions. Subsequently, this concept has studied for mappings in Banach and metric spaces see, e.g., 2–7 . Recently, some generalized types of quasi-nonexpansive mappings in metric and Banach spaces have appeared. For example, see Ahmed and Zeyada 8 , Qihou 9–11 and others. Unless stated to the contrary, we ass...

متن کامل

A characterization of the convergence of Picard iteration to a fixed point for a continuous mapping and an application

Necessary and sufficient conditions for the convergence of Picard iteration to a fixed point for a continuous mapping in metric spaces are established. As application, we prove the convergence theorem of Ishikawa iteration to a fixed point for a nonexpansive mapping in Banach spaces. 2004 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008