GS : A Network that Learns Important Features
نویسندگان
چکیده
GS is a network for supervised inductive learning from examples that uses ideas from neural networks and symbolic inductive learning to gain benefits of both methods. The network is built of many simple nodes that learn important features in the input space and then monitor the ability of the features to predict output values. The network avoids the exponential nature of the number of features by using information gained by general features to guide the creation of more specific features. Empirical evaluation of the model on real world data has shown that the network provides good generalization performance. Convergence is accomplished within a small number of training passes. The network provides these benefits while automatically allocating and deleting nodes and without requiring user adjustment of any parameters. The network learns incrementally and operates in a parallel fashion.
منابع مشابه
Learning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملExplaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car
As part of a complete software stack for autonomous driving, NVIDIA has created a neural-network-based system, known as PilotNet, which outputs steering angles given images of the road ahead. PilotNet is trained using road images paired with the steering angles generated by a human driving a data-collection car. It derives the necessary domain knowledge by observing human drivers. This eliminat...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کامل