Prenatal Exposure to Arsenic and Cadmium Impacts Infectious Disease-Related Genes within the Glucocorticoid Receptor Signal Transduction Pathway

نویسندگان

  • Julia E. Rager
  • Andrew Yosim
  • Rebecca C. Fry
چکیده

There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انتقال ژن‌های OF2 و VAP به چغندر قند با کمک آگروباکتریوم ریزوژنز برای بررسی مقاومت به نماتد

OF2 and VAP genes, probably involved in signal transduction of sugarbeet nematode resistance, have already been cloned in bacterial vector by AFLP molecular marker and a two-hybrid system, respectively. To examine their capability to introduce resistance in sugarbeet, the genes were transferred to plant expression vectors. For this reason, OF2 gene after isolation was inserted within T-DNA of p...

متن کامل

انتقال ژن‌های OF2 و VAP به چغندر قند با کمک آگروباکتریوم ریزوژنز برای بررسی مقاومت به نماتد

OF2 and VAP genes, probably involved in signal transduction of sugarbeet nematode resistance, have already been cloned in bacterial vector by AFLP molecular marker and a two-hybrid system, respectively. To examine their capability to introduce resistance in sugarbeet, the genes were transferred to plant expression vectors. For this reason, OF2 gene after isolation was inserted within T-DNA of p...

متن کامل

Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

BACKGROUND The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology-based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. OBJECTIVES First, we applied a novel computational approach to identify a prioritized biological pathway that associates...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

A Systems-Level Approach to Studying Birth Defects: Novel Method Identifies Potential Key Pathway

Birth defects are a leading cause of infant mortality, and the majority of defects have unknown causes. Now researchers at the University of North Carolina–Chapel Hill have identified the glucocorticoid receptor pathway as a key mediator of birth defects caused by exposure to inorganic arsenic [EHP 121(3):332–338; Ahir et al.]. The researchers used a three-part strategy to test their hypothesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014