The MLPG Mixed Collocation Method for Material Orientation and Topology Optimization of Anisotropic Solids and Structures
نویسندگان
چکیده
In this paper, a method based on a combination of an optimization of directions of orthotropy, along with topology optimization, is applied to continuum orthotropic solids with the objective of minimizing their compliance. The spatial discretization algorithm is the so called Meshless Local Petrov-Galerkin (MLPG) “mixed collocation” method for the design domain, and the material-orthotropy orientation angles and the nodal volume fractions are used as the design variables in material optimization and topology optimization, respectively. Filtering after each iteration diminishes the checkerboard effect in the topology optimization problem. The example results are provided to illustrate the effects of the orthotropic material characteristics in structural topology-optimization. Keyword: orthotropy, material-axes orientation optimization, topology optimization, meshless method, MLPG, collocation, mixed method
منابع مشابه
Topology-optimization of Structures Based on the MLPG Mixed Collocation Method
The Meshless Local Petrov-Galerkin (MLPG) “mixed collocation” method is applied to the problem of topology-optimization of elastic structures. In this paper, the topic of compliance minimization of elastic structures is pursued, and nodal design variables which represent nodal volume fractions at discretized nodes are adopted. A so-called nodal sensitivity filter is employed, to prevent the phe...
متن کاملMeshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems
The Meshless Local Petrov-Galerkin (MLPG) mixed collocation method is proposed in this paper, for solving elasticity problems. In the present MLPG approach, the mixed scheme is applied to interpolate the displacements and stresses independently, as in the MLPG finite volume method. To improve the efficiency, the local weak form is established at the nodal points, for the stresses, by using the ...
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کاملOn the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کاملSTRUCTURAL DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION FOR PLANE STRESS PROBLEMS
This paper aims to introduce topology optimization as a robust tool for damage detection in plane stress structures. Two objective functions based on natural frequencies and shape modes of the structure are defined to minimize discrepancy between dynamic specifications of the real damaged structure and the updating model. Damage area is assumed as a porous material where amount of porosity sign...
متن کامل