Countable dense homogeneity and λ - sets

نویسندگان

  • Rodrigo Hernández-Gutiérrez
  • Michael Hrušák
  • Jan van Mill
چکیده

We show that all sufficiently nice λ-sets are countable dense homogeneous (CDH). From this fact we conclude that for every uncountable cardinal κ ≤ b there is a countable dense homogeneous metric space of size κ. Moreover, the existence of a meager in itself countable dense homogeneous metric space of size κ is equivalent to the existence of a λ-set of size κ. On the other hand, it is consistent with the continuum arbitrarily large that every CDH metric space has size either ω1 or c. An example of a Baire CDH metric space which is not completely metrizable is presented. Finally, answering a question of Arhangel’skii and van Mill we show that that there is a compact non-metrizable CDH space in ZFC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense non-reflection for stationary collections of countable sets

We present several forcing posets for adding a non-reflecting stationary subset of Pω1 (λ), where λ ≥ ω2. We prove that PFA is consistent with dense non-reflection in Pω1 (λ), which means that every stationary subset of Pω1 (λ) contains a stationary subset which does not reflect to any set of size א1. If λ is singular with countable cofinality, then dense non-reflection in Pω1 (λ) follows from ...

متن کامل

A countable dense homogeneous set of reals of size א

We prove there is a countable dense homogeneous subspace of R of size א1. The proof involves an absoluteness argument using an extension of the Lω1ω(Q) logic obtained by adding predicates for Borel sets. A separable topological space X is countable dense homogeneous (CDH) if, given any two countable dense subsets D and D′ of X, there is a homeomorphism h of X such that h[D] = D′. The main purpo...

متن کامل

Ungar’s Theorems on Countable Dense Homogeneity Revisited

In this paper we introduce a slightly stronger form of countable dense homogeneity that for Polish spaces can be characterized topologically in a natural way. Along the way, we generalize theorems obtained by Bennett and Ungar on countable dense homogeneity.

متن کامل

Open Problems on Countable Dense Homogeneity

We survey recent development in research on countable dense homogeneity with special emphasis on open problems.

متن کامل

On Countable Dense and n-homogeneity

We prove that a connected, countable dense homogeneous space is n-homogeneous for every n, and strongly 2-homogeneous provided it is locally connected. We also present an example of a connected and countable dense homogeneous space which is not strongly 2-homogeneous. This answers in the negative Problem 136 of Watson in the Open Problems in Topology Book.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014