The submonoid and rational subset membership problems for graph groups

نویسندگان

  • Markus Lohrey
  • Benjamin Steinberg
چکیده

We show that the membership problem in a finitely generated submonoid of a graph group (also called a right-angled Artin group or a free partially commutative group) is decidable if and only if the independence graph (commutation graph) is a transitive forest. As a consequence we obtain the first example of a finitely presented group with a decidable generalized word problem that does not have a decidable membership problem for finitely generated submonoids. We also show that the rational subset membership problem is decidable for a graph group if and only if the independence graph is a transitive forest, answering a question of Kambites, Silva, and the second author [24]. Finally we prove that for certain amalgamated free products and HNN-extensions the rational subset and submonoid membership problems are recursively equivalent. In particular, this applies to finitely generated groups with two or more ends that are either torsion-free or residually finite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Problems on Inverse Monoids over Virtually Free Groups

Let G be a finitely generated virtually-free group. We consider the Birget-Rhodes expansion of G, which yields an inverse monoid and which is denoted by IM(G) in the following. We show that for a finite idempotent presentation P , the word problem of a quotient monoid IM(G)/P can be solved in linear time on a RAM. The uniform word problem, where G and the presentation P are also part of the inp...

متن کامل

Knapsack Problems in Groups

We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give various examples of finitely presented groups where the subset sum problem is NP-complete.

متن کامل

Small Overlap Monoids Ii: Automatic Structures and Normal Forms

We show that any finite monoid or semigroup presentation satisfying the small overlap condition C(4) has word problem which is a deterministic rational relation. It follows that the set of lexicographically minimal words forms a regular language of normal forms, and that these normal forms can be computed in linear time. We also deduce that C(4) monoids and semigroups are rational (in the sense...

متن کامل

The Rational Subset Membership Problem for Groups: A Survey

The class of rational subsets of a group G is the smallest class that contains all finite subsets of G and that is closed with respect to union, product and taking the monoid generated by a set. The rational subset membership problem for a finitely generated group G is the decision problem, where for a given rational subset of G and a group element g it is asked whether g ∈ G. This paper presen...

متن کامل

On the rational subset problem for groups

We use language theory to study the rational subset problem for groups and monoids. We show that the decidability of this problem is preserved under graph of groups constructions with finite edge groups. In particular, it passes through free products amalgamated over finite subgroups and HNN extensions with finite associated subgroups. We provide a simple proof of a result of Grunschlag showing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007