A Modified Hopfield Neural Network Method for Equality Constrained State Estimation

نویسندگان

  • S.Sundeep
  • G. MadhusudhanaRao
چکیده

Electric power system is a highly complex and non linear system. Its analysis and control in real time environment requires highly sophisticated computational skills. Computations are reaching a limit as far as conventional computer based algorithms are concerned. It is therefore required to find out newer methods which can be easily implemented on dedicated hardware. It is a very difficult task due to complexity of the power system with all its interdependent variables, thus making the neural networks one of the better options for the solution of different issues in operation and control. In this project an attempt has been made to implement ANN’s for State Estimation. A Hopfield neural network model has been developed to test Topological Observability of Power System and it is tested on two different test systems. The results so obtained, are comparable with those results of conventional root based observability determination technique. Further a Hopfield model has been developed to determine State Estimation of power system. State Estimation of 6 bus and IEEE 14 bus system is attempted using this Hopfield neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization

In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...

متن کامل

Neural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree

In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...

متن کامل

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Comparative Study of Economic Load Dispatch (eld) Using Modified Hopfield Neural Network

The economic load dispatch (ELD) is one of the most important optimization problems from the view point of power system to derive optimal economy. Classically, it is to Identify the optimal combination of generation level of all generating units which minimizes the total fuel cost while satisfying the load. This classical ELD formulation has been solved by various methods like Lagrange method, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011