LASSO based stimulus frequency recognition model for SSVEP BCIs

نویسندگان

  • Yu Zhang
  • Jing Jin
  • Xiangyun Qing
  • Bei Wang
  • Xingyu Wang
چکیده

Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction of more discriminative features of SSVEP, and then we propose a LASSO model using the linear regression between electroencephalogram (EEG) recordings and the standard square-wave signals of different frequencies to recognize SSVEP without the training stage. In this study, we verified the proposed LASSO model offline with the EEG data of nine healthy subjects in contrast to canonical correlation analysis (CCA). In the experiment, when a shorter time window was used, we found that the LASSO model yielded better performance in extracting robust and detectable features of SSVEP, and the information transfer rate obtained by the LASSO model was significantly higher than that of the CCA. Our proposed method can assist to reduce the recording time without sacrificing the classification accuracy and is promising for a high-speed SSVEP-based BCI. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Frequency Recognition Method Based on Likelihood Ratio Test for SSVEP-Based BCI

An efficient frequency recognition method is very important for SSVEP-based BCI systems to improve the information transfer rate (ITR). To address this aspect, for the first time, likelihood ratio test (LRT) was utilized to propose a novel multichannel frequency recognition method for SSVEP data. The essence of this new method is to calculate the association between multichannel EEG signals and...

متن کامل

Steady State Visually Evoked Potentials detection using a single electrode consumer-grade EEG device for BCI applications

Brain-Computer Interfaces (BCIs) implement a direct communication pathway between the brain of an user and an external device, as a computer or a machine in general. One of the most used brain responses to implement non-invasive BCIs is the so called steady-state visually evoked potential (SSVEP). This periodic response is generated when an user gazes to a light flickering at a constant frequen...

متن کامل

Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI

BACKGROUND Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) generate weak SSVEP with a monitor and cannot use harmonic frequencies, whereas P300-based BCIs need multiple stimulation sequences. These issues can decrease the information transfer rate (ITR). NEW METHOD In this paper, we introduce a novel hybrid SSVEP-P300 speller that generates dual-frequency S...

متن کامل

A Survey of Stimulation Methods Used in SSVEP-Based BCIs

Brain-computer interface (BCI) systems based on the steady-state visual evoked potential (SSVEP) provide higher information throughput and require shorter training than BCI systems using other brain signals. To elicit an SSVEP, a repetitive visual stimulus (RVS) has to be presented to the user. The RVS can be rendered on a computer screen by alternating graphical patterns, or with external ligh...

متن کامل

On the stimulus duty cycle in steady state visual evoked potential

Brain-computer interfaces (BCI) are useful devices that allow direct control of external devices using thoughts, i.e. brain’s electrical activity. There are several BCI paradigms, of which steady state visual evoked potential (SSVEP) is the most commonly used due to its quick response and accuracy. SSVEP stimuli are typically generated by varying the luminance of a target for a set number of fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012