m at h . A G ] 2 1 Ju n 20 07 COUPLED PAINLEVÉ VI SYSTEMS IN DIMENSION FOUR WITH AFFINE WEYL GROUP SYMMETRY OF TYPE

نویسنده

  • YUSUKE SASANO
چکیده

We give a reformulation of a six-parameter family of coupled Painlevé VI systems with affine Weyl group symmetry of type D (1) 6 . We also study some Hamiltonian structures of this system. 0. Introduction In the present paper, we propose a 6-parameter family of four-dimensional coupled Painlevé VI systems with affine Weyl group symmetry of type D (1) 6 . Our differential system is equivalent to the Hamiltonian system given by dq1 dt = ∂H ∂p1 , dp1 dt = − ∂H ∂q1 , dq2 dt = ∂H ∂p2 , dp2 dt = − ∂H ∂q2 , H =HV I(q1, p1, η, t;α0, α1, α2, α3 + 2α4 + α5, α3 + α6) +HV I(q2, p2, η, t;α0 + 2α2 + α3, α1 + α3, α4, α5, α6) + 2(q1 − η)q2{(q1 − t)p1 + α2}{(q2 − 1)p2 + α4} t(t− 1)(t− η) (η ∈ C − {0, 1}). (1) Here q1, p1, q2, p2 denote unknown complex variables, and α0, α1, . . . , α6 are complex parameters satisfying the relation α0 + α1 + 2(α2 + α3 + α4) + α5 + α6 = 1, where the symbol HV I(q, p, η, t; β0, β1, β2, β3, β4) is given in Section 2. If we take the limit η → ∞, we obtain the Hamiltonian system with polynomial Hamiltonian H̃ H̃ = H̃V I(q1, p1, t;α0, α1, α2, α3 + 2α4 + α5, α3 + α6) + H̃V I(q2, p2, t;α0 + α3, α1 + 2α2 + α3, α4, α5, α6) + 2(q1 − t)p1q2{(q2 − 1)p2 + α4} t(t− 1) (2) given in [4], where the symbol H̃V I denotes H̃V I(q, p, t; δ0, δ1, δ2, δ3, δ4) = 1 t(t− 1) [p(q − t)(q − 1)q − {(δ0 − 1)(q − 1)q + δ3(q − t)q + δ4(q − t)(q − 1)}p+ δ2(δ1 + δ2)q] (δ0 + δ1 + 2δ2 + δ3 + δ4 = 1). (3) We can obtain the system (1) by the following steps: (1) We symmetrize the holomorphy conditions r i of the system (2) (see Section 5). 2000Mathematics Subject Classification Numbers. 34M55, 34M45, 58F05, 32S65, 14E05, 20F55. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Painlevé Vi Systems in Dimension Four with Affine Weyl Group Symmetry of Type D

We give a reformulation of a six-parameter family of coupled Painlevé VI systems with affine Weyl group symmetry of type D (1) 6 from the viewpoint of its symmetry and holomorphy properties. In [9, 10], we proposed a 6-parameter family of four-dimensional coupled Painlevé VI systems with affine Weyl group symmetry of type D (1) 6. This system can be considered as a genelarization of the Painlev...

متن کامل

Painlevé Vi Systems in Dimension Four with Affine Weyl Group Symmetry of Types

We find and study four kinds of 6-parameter family of coupled Painlevé VI systems with affine Weyl group symmetry of types B (1) 6 , D (1) 6 and D (2) 7 . We also give an explicit description of a confluence to the Noumi-Yamada system of type A (1) 5 . 0. Introduction In 1912, considering the significant problem of searching for higher order analogues of the Painlevé equations, Garnier discover...

متن کامل

ar X iv : m at h - ph / 0 70 10 41 v 1 1 3 Ja n 20 07 Coupled Painlevé VI system with E ( 1 ) 6 - symmetry

We present an new system of ordinary differential equations with affine Weyl group symmetry of type E (1) 6 . This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian. 2000 Mathematics Subject Classification: 34M55, 17B80, 37K10. Introduction The Painlevé equations PJ (J = I, . . . ,VI) are ordinary differential equations of second order. It is know...

متن کامل

ar X iv : m at h - ph / 0 70 10 41 v 2 1 9 A pr 2 00 7 Coupled Painlevé VI system with E ( 1 ) 6 - symmetry

We present an new system of ordinary differential equations with affine Weyl group symmetry of type E (1) 6 . This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian. Introduction The Painlevé equations PJ (J = I, . . . ,VI) are ordinary differential equations of second order. It is known that these PJ admit the following affine Weyl group symmetri...

متن کامل

2 YUSUKE SASANO Theorem 0

In this paper, we propose a 2-parameter family of coupled Painlevé II systems in dimension four with affine Weyl group symmetry of type D (2) 3. We also propose a 4-parameter family of 2-coupled D (2) 3-systems in dimension eight with affine Weyl group symmetry of type D In this paper, we present a 2-parameter family of 2-coupled Painlevé II systems with affine Weyl group symmetry of type D

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008