Tracking the amphibian pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans using a highly specific monoclonal antibody and lateral‐flow technology
نویسندگان
چکیده
The fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a lethal epizootic disease of amphibians. Rapid identification of the pathogen and biosecurity is essential to prevent its spread, but current laboratory-based tests are time-consuming and require specialist equipment. Here, we describe the generation of an IgM monoclonal antibody (mAb), 5C4, specific to Bd as well as the related salamander and newt pathogen Batrachochytrium salamandrivorans (Bsal). The mAb, which binds to a glycoprotein antigen present on the surface of zoospores, sporangia and zoosporangia, was used to develop a lateral-flow assay (LFA) for rapid (15 min) detection of the pathogens. The LFA detects known lineages of Bd and also Bsal, as well as the closely related fungus Homolaphlyctis polyrhiza, but does not detect a wide range of related and unrelated fungi and oomycetes likely to be present in amphibian habitats. When combined with a simple swabbing procedure, the LFA was 100% accurate in detecting the water-soluble 5C4 antigen present in skin, foot and pelvic samples from frogs, newts and salamanders naturally infected with Bd or Bsal. Our results demonstrate the potential of the portable LFA as a rapid qualitative assay for tracking these amphibian pathogens and as an adjunct test to nucleic acid-based detection methods.
منابع مشابه
Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in Amphibian samples.
Chytridiomycosis is a lethal fungal disease contributing to declines and extinctions of amphibian species worldwide. The currently used molecular screening tests for chytridiomycosis fail to detect the recently described species Batrachochytrium salamandrivorans. In this study, we present a duplex real-time PCR that allows the simultaneous detection of B. salamandrivorans and Batrachochytrium d...
متن کاملInhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria
Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobat...
متن کاملAmphibian chytridiomycosis: a review with focus on fungus-host interactions
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibia...
متن کاملBatrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.
The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines re...
متن کاملExpanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe
Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity.
متن کامل