Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers

نویسندگان

  • Hiroaki Nishikawa
  • Keiichi Kitamura
چکیده

In this paper, we propose new Euler flux functions for use in a finite-volume Euler/Navier–Stokes code, which are very simple, carbuncle-free, yet have an excellent boundary-layer-resolving capability, by combining two different Riemann solvers into one based on a rotated Riemann solver approach. We show that very economical Euler flux functions can be devised by combining the Roe solver (a full-wave solver) and the Rusanov/HLL solver (a fewer-wave solver), based on a rotated Riemann solver approach: a fewer-wave solver automatically applied in the direction normal to shocks to suppress carbuncles and a full-wave solver applied, again automatically, across shear layers to avoid an excessive amount of dissipation. The resulting flux functions can be implemented in a very simple and economical manner, in the form of the Roe solver with modified wave speeds, so that converting an existing Roe flux code into the new fluxes is an extremely simple task. They require only 7–14% extra CPU time and no problem-dependent tuning parameters. These new rotated fluxes are not only robust for shock-capturing, but also accurate for resolving shear layers. This is demonstrated by an extensive series of numerical experiments with standard finite-volume Euler and Navier–Stokes codes, including various shock instability problems and also an unstructured grid case. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust shock-capturing scheme based on rotated Riemann solvers

This paper presents a robust finite volume shock-capturing scheme based on the rotated approximate Riemann solver. A general framework for constructing the rotated Riemann solver is described and a rotated Roe scheme is discussed in detail. It is found that the robustness of the rotated shock-capturing scheme is closely related to the way in which the direction of upwind differencing is determi...

متن کامل

Comparison between Two HLL-type Riemann Solvers for Strong Shock Calculation on ALE Framework

This paper investigates solution behaviors under the strong shock interaction for moving mesh schemes based on the one-dimensional HLL-type Riemann solvers. Numerical experiments show that some schemes which updates the flow parameters directly on the moving mesh without using interpolation, may suffer from severe instability such as grid distortion. But the HLL solver can be free from such fai...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

An upwinded state approximate Riemann solver

Stability is achieved in most approximate Riemann solvers through ‘flux upwinding’, where the flux at the interface is arrived at by adding a dissipative term to the average of the left and right flux. Motivated by the existence of a collapsed interface state in the gas-kinetic Bhatnagar–Gross–Krook (BGK) method, an alternative approach to upwinding is attempted here; an interface state is arri...

متن کامل

Gas Evolution Dynamics in Godunov-type Schemes and Analysis of Numerical Shock Instability

In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008