Multimodularity, Convexity, and Optimization Properties
نویسندگان
چکیده
We investigate in this paper the properties of multimodular functions. In doing so we give alternative proofs for properties already established by Hajek, and we extend his results. In particular, we show the relation between convexity and multimodularity, which allows us to restrict the study of multimodular functions to convex subsets of Z m. We then obtain general optimization results for average costs related to a sequence of multimodular functions. In particular, we establish lower bounds, and show that the expected average problem is optimized by using balanced sequences. We nally illustrate the usefulness of this theory in admission control into a D/D/1 queue with xed batch arrivals, with no state information. We show that the balanced policy minimizes the average queue length for the case of an innnite queue, but not for the case of a nite queue. When further adding a constraint on the losses, it is shown that a balanced policy is also optimal for the case of nite queue. into a queue. Gaujal is a member of a common project between CNRS, UNSA and INRIA. RRsumm : Dans cet article, nous nous inttressons aux propriitts des fonctions multimo-dulaires. Ce faisant, nous montrons de nouvelles preuves des propriitts tablies par Hajek et nous tendons certains de ses rrsultats. En particulier, nous montrons la relation qui existe entre multimodularitt et convexitt qui nous permet d''tudier la multimodularitt sur des parties convexes de Z m. Ensuite, nous obtenons des rrsultats ggnnraux d'optimisation pour le coot moyen d'une suite de fonctions multimodulaires. En particulier, on exhibe des bornes inffrieures et on montre qu'elles sont atteintes pour les suites quilibrres. Finale-ment, on illustre l'utilitt de cette thhorie pour le contrrle d'admission dans une le D/D/1 avec des arrives par paquets de taille xe, sans information. On montre que la politique quilibrre minimise la longueur moyenne de la le pour une capacitt innnie mais pas dans le cas d'une le capacitt nie. Dans ce cas, Si l'on ajoute une contrainte sur les pertes, on montre aussi qu'une politique quilibrre est optimale.
منابع مشابه
Simplex convexity , with application to open loop stochastic control in networks
In this paper, we present the notion of multimodular triangulation under a new geometrical point of view. We also show the link with multimodular functions by a new proof of the convexity theorem. This is used to de ne a partial ordering compatible with multimodularity called the cone ordering. An application in admission control in queues is then presented.
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Note on Multimodularity and L-Convexity
Multimodular functions and L-convex functions have been investigated almost independently, but they are, in fact, equivalent objects that can be related through a simple coordinate transformation. Some facts known for L-convex functions can be translated to new results for multimodular functions, and vice versa. In particular, the local optimality condition for global optimality found in the li...
متن کاملStructured Optimal Transmission Control in Network-coded Two-way Relay Channels
This paper considers a transmission control problem in network-coded two-way relay channels (NCTWRC), where the relay buffers random symbol arrivals from two users, and the channels are assumed to be fading. The problem is modeled by a discounted infinite horizon Markov decision process (MDP). The objective is to find a transmission control policy that minimizes the symbol delay, buffer overflo...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملSymmetry properties in structural optimization: some extensions
In the present paper, some extensions of the previous theoretical results about the symmetry properties of structural optimization problems are reported. It is found that generally the condition of convexity can be relaxed to quasi-convexity in order to guarantee the existence of symmetry global optima. Furthermore, some new results about the symmetry properties of robust and discrete structura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 25 شماره
صفحات -
تاریخ انتشار 2000