Evaluating resource selection functions
نویسندگان
چکیده
A resource selection function (RSF) is any model that yields values proportional to the probability of use of a resource unit. RSF models often are fitted using generalized linear models (GLMs) although a variety of statistical models might be used. Information criteria such as the Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC) are tools that can be useful for selecting a model from a set of biologically plausible candidates. Statistical inference procedures, such as the likelihood-ratio test, can be used to assess whether models deviate from random null models. But for most applications of RSF models, usefulness is evaluated by how well the model predicts the location of organisms on a landscape. Predictions from RSF models constructed using presence/absence (used/ unused) data can be evaluated using procedures developed for logistic regression, such as confusion matrices, Kappa statistics, and Receiver Operating Characteristic (ROC) curves. However, RSF models estimated from presence/ available data create unique problems for evaluating model predictions. For presence/available models we propose a form of k -fold cross validation for evaluating prediction success. This involves calculating the correlation between RSF ranks and area-adjusted frequencies for a withheld sub-sample of data. A similar approach can be applied to evaluate predictive success for out-of-sample data. Not all RSF models are robust for application in different times or different places due to ecological and behavioral variation of the target organisms. # 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions
The PROMETHEE is a significant method for evaluating alternatives with respect to criteria in multi-criteria decision-making problems. It is characterized by many types of preference functions that are used for assigning the differences between alternatives in judgements. This paper proposes a preference of green suppliers using the PROMETHEE under the usual criterion preference functions. Comp...
متن کاملIdentifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis
Nowadays companies measure suppliers on the basis of a variety of factors and criteria that affect the supplier's selection issue. This paper intended to identify the key effective criteria for selection of green suppliers through an efficient algorithm callediterative process mining or i-PM. Green data were collected first by reviewing the previous studies to identify various environmental cri...
متن کاملA Review on the Hydrodynamic Characteristics of the SPP Concerning to the Available Experimental Data and Evaluating Regression Polynomial Functions
Surface-piercing propellers have been widely used in light and high-speed vessels because of their superior performance. One of the major steps in propeller selection algorithm is the determination of thrust as well as torque hydrodynamic coefficients. For the purpose of simplifying design and selection procedure, some relations are presented for determining hydrodynamic coefficients in some st...
متن کاملA machine‐learning approach for extending classical wildlife resource selection analyses
Resource selection functions (RSFs) are tremendously valuable for ecologists and resource managers because they quantify spatial patterns in resource utilization by wildlife, thereby facilitating identification of critical habitat areas and characterizing specific habitat features that are selected or avoided. RSFs discriminate between known-use resource units (e.g., telemetry locations) and av...
متن کاملResource Selection Functions Based on Use–Availability Data: Theoretical Motivation and Evaluation Methods
Applications of logistic regression in a used–unused design in wildlife habitat studies often suffer from asymmetry of errors: used resource units (landscape locations) are known with certainty, whereas unused resource units might be observed to be used with greater sampling intensity. More appropriate might be to use logistic regression to estimate a resource selection function (RSF) tied to a...
متن کامل