Efficient calculation of charge-transfer matrix elements for hole transfer in DNA.
نویسندگان
چکیده
We present a new computational strategy to evaluate the charge-transfer (CT) parameters for hole transfer in DNA. On the basis of a fragment-orbital approach, site energies and coupling integrals for a coarse-grained tight-binding description of the electronic structure of DNA are rapidly calculated using the approximative density functional method SCC-DFTB. The methodology is validated by extensive test calculations in comparison with DFT and ab initio reference data, demonstrating its high accuracy at low computational cost. Environmental effects are captured using a quantum mechanics-molecular mechanics (QM/MM) coupling scheme, and dynamical effects are included by evaluating the CT parameters along classical molecular dynamics simulations. This combined methodology allows for a realistic treatment of CT processes in DNA.
منابع مشابه
Estimates of electronic coupling for excess electron transfer in DNA.
Electronic coupling V(da) is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of V(da) for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in...
متن کاملInvestigation of Capsulated Epoxy and DCPD in Epoxy Based Self-healing Composites - DFT Calculation and Experimental Analysis
Epoxy and dicyclopentadien (DCPD) are two common healing agents, which are introduced into epoxy matrix through encapsulation in order to prepare self-healing composites. In a comparative study, the compatibility of healing agents and epoxy matrix is investigated through experimental tests and DFT calculations. The interaction energy is considered to be the determinative parameter in DFT calcul...
متن کاملروش جفتشدگی نزدیک دومرکزی در فرآیند انتقال بار
In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is ...
متن کاملEfficient algorithms for the simulation of non-adiabatic electron transfer in complex molecular systems: application to DNA.
In this work, a fragment-orbital density functional theory-based method is combined with two different non-adiabatic schemes for the propagation of the electronic degrees of freedom. This allows us to perform unbiased simulations of electron transfer processes in complex media, and the computational scheme is applied to the transfer of a hole in solvated DNA. It turns out that the mean-field ap...
متن کاملA new approach to microscopic modeling of a hole transfer in heteropolymer DNA
Thermal oscillations of base pairs in the Peyrard-Bishop-Holstein model are simulated by stochastic fluctuations of base overlap integrals. Numerical investigation of the model is carried out for a hole transfer in G1A2G3G4 sequence which was previously studied experimentally by F. Lewis et al. A hole migration between G1 and G3G4 is determined by the matrix elements of the charge transition, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 26 شماره
صفحات -
تاریخ انتشار 2008