Reproducing Kernel Methods for Solving Linear Initial-boundary-value Problems
نویسندگان
چکیده
In this paper, a reproducing kernel with polynomial form is used for finding analytical and approximate solutions of a second-order hyperbolic equation with linear initial-boundary conditions. The analytical solution is represented as a series in the reproducing kernel space, and the approximate solution is obtained as an n-term summation. Error estimates are proved to converge to zero in the sense of the space norm, and a numerical example is given to illustrate the method.
منابع مشابه
An Effective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument
Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...
متن کاملReproducing Kernel Hilbert Space(RKHS) method for solving singular perturbed initial value problem
In this paper, a numerical scheme for solving singular initial/boundary value problems presented.By applying the reproducing kernel Hilbert space method (RKHSM) for solving these problems,this method obtained to approximated solution. Numerical examples are given to demonstrate theaccuracy of the present method. The result obtained by the method and the exact solution are foundto be in good agr...
متن کاملReproducing kernel method for singular multi-point boundary value problems
Purpose: In this paper, we shall present an algorithm for solving more general singular second-order multi-point boundary value problems. Methods: The algorithm is based on the quasilinearization technique and the reproducing kernel method for linear multi-point boundary value problems. Results: Three numerical examples are given to demonstrate the efficiency of the present method. Conclusions:...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملError estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.
متن کامل