Mathematics Approaches in Compressed Sensing

نویسندگان

  • Jianhua Zhou
  • Siwang Zhou
  • Qiang Fan
چکیده

Mathematical approaches refer to make quantitative descriptions, deductions and calculations through the use of mathematics concepts, approaches and techniques, then draw some new conclusions and foresee by mathematical analysis and judgement. In recent years, Compressed Sensing theory (CS) provides solutions in alleviating the huge amount of information demand in the pressure of signal sampling, transmission and storage pressure. It is a novel signal sampling theory under the condition that the signal is compressible or sparse.In this case, the signal can be reconstructed accurately from the small amount of signal values if the signal is sparse or compressible. This paper introduces the CS theory framework and key technical issues, and focus on the analysis of the application of mathematical approaches in three aspects of the signal sparse representation, signal sparse transformation and reconstruction.In the end, Some mathematics problems of compressed sensing to solve are given and further development is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

Compressed sensing and designs: theory and simulations

In An asymptotic result on compressed sensing matrices [4], a new construction for compressed sensing matrices using combinatorial design theory was introduced. In this paper, we analyse the performance of these matrices using deterministic and probabilistic methods. We provide a new recovery algorithm and detailed simulations. These simulations suggest that the construction is competitive with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013