Ion trapping with fast-response ion-selective microelectrodes enhances detection of extracellular ion channel gradients.

نویسندگان

  • Mark A Messerli
  • Leon P Collis
  • Peter J S Smith
چکیده

Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 microm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10-55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring extracellular ion gradients from single channels with ion-selective microelectrodes.

Under many different conditions activated plasma membrane ion channels give rise to changes in the extracellular concentration of the permeant ion(s). The magnitude and duration of these changes are dependent on the electrochemical driving force(s) on the permeant ion(s) as well as conductance, open time, and channel density. We have modeled the change in the extracellular [K+] due to efflux th...

متن کامل

Selective Membrane Electrode for Bromide Ion Based on Aza Pyrilium Ion Derivative as a new Ionophore.

A highly selective electrode for Bromide ion based on aza pyrilium derivative as an excellentionophore is described.The sensor exhibits a good linear response with a slope of ( 60±1 ) mV per decadeover the concentration range of ( 1×10-3 – 9×10-6 M ) , and a detection limit of ( 3×10-6 M ) of Bromideions .The electrode response is independent of pH in the range of(4.0 –9.5).Selectivity coeffici...

متن کامل

Ion-Selective Carbon Paste Electrode Based on 2-Amino-N-benzthioazolyl Benzamide (ABTB) for Determination of Copper (II) by Potentiometric Method

2-Amino-N-benzthioazolyl benzamide (ABTB) was synthesized, characterized and used for thefabrication of a potentiometric sensor for Cu2+ metal ions. The electrode exhibits linear response to Cu(II) over a wide concentration range (4.79×10 -8 – 1.85×10 -1 M) with Nernstian slope of 30 ± 1.5 mVper decade. The electrode can be used in the pH range from 2 to 9. It has a fast response time of about1...

متن کامل

Chromium (III) ion selective electrode based on di(benzylamino)glyoxime

A new poly(vinylchloride) membrane sensor for Cr3+ ions based on di (benzylamino)glyoxime asan ionophore was prepared. The electrode has a linear dynamic range 1×10-6-1×10-1 mol l-1,with aNernstian slope of 20.3 ± 0.5 mV per decade and a detection limit of 2×10-7. It has a fast responsetime of

متن کامل

Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue.

Electrical activity in the brain is accompanied by significant ion fluxes across membranes, resulting in complex changes in the extracellular concentration of all major ions. As these ion shifts bear significant functional consequences, their quantitative determination is often required to understand the function and dysfunction of neural networks under physiological and pathophysiological cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 2009