K-cut Crossover Using Graph Theory in Genetic Network Programming
نویسندگان
چکیده
Abstract. In this study, we focus on Genetic Network Programming (GNP) which is the graph-based evolutionary algorithm. Similar to Genetic Algorithm (GA) and Genetic Programming (GP), GNP applies genetic operators to an individual, which is represented by a directed graph, in order to solve a given problem. GNP is usually applied to automatic generation of programs which control a mobile robot. Since the crossover exchanges a sub-graph of parent individuals, a selection of a sub-graph is an important factor. Some selection methods are proposed in previous work. However, the selection method based on the graph theory is not proposed even though the individual is represented by a graph. In this study, we propose a k-cut crossover based on the graph theory. The proposed k-cut crossover selects a sub-graph by using a minimum k-cut algorithm which finds a minimum graph partition on weighted graph. We applied the GNP with the k-cut crossover to the automatic generation of programs in the tileworld, and the experimental result shows the advantage of the k-cut crossover.
منابع مشابه
Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملOptimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملAn Application of Genetic Network Programming Model for Pricing of Basket Default Swaps (BDS)
The credit derivatives market has experienced remarkable growth over the past decade. As such, there is a growing interest in tools for pricing of the most prominent credit derivative, the credit default swap (CDS). In this paper, we propose a heuristic algorithm for pricing of basket default swaps (BDS). For this purpose, genetic network programming (GNP), which is one of the recent evolutiona...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملCombinatorial Optimization in Computational Biology
Combinatorial Optimization is a central sub-area in Operations Research that has found many applications in computational biology. In this talk I will survey some of my research in computational biology that uses graph theory, matroid theory, and integer linear programming. The biological applications come from haplotyping, the study of recombination and recombination networks, and phylogenetic...
متن کامل