Simultaneous Polynomial Approximations of the Lerch Function
نویسنده
چکیده
We construct bivariate polynomial approximations of the Lerch function, which for certain specialisations of the variables and parameters turn out to be HermitePadé approximants either of the polylogarithms or of Hurwitz zeta functions. In the former case, we recover known results, while in the latter the results are new and generalise some recent works of Beukers and Prévost. Finally, we make a detailed comparison of our work with Beukers’. Such contructions are useful in the arithmetical study of the values of the Riemann zeta function at integer points and of the Kubota-Leopold p-adic zeta function. Résumé. Nous construisons des approximations polynomiales en deux variables de la fonction de Lerch, qui, pour certaines spécialisations des variables et des paramètres, s’avèrent être des approximants de Hermite-Padé soit des fonctions polylogarithmes soit des fonctions zêta d’Hurwitz. Dans le premier cas, nous retrouvons des résultats connus de la littérature tandis que dans le second cas, les résultats sont nouveaux et généralisent des travaux récents de Beukers et Prévost. Enfin, nous comparons l’approche de Beukers et la nôtre. De telles constructions sont utiles dans l’étude arithmétique des valeurs aux entiers de la fonction zêta de Riemann et de la fonction zêta p-adique de Kubota-Leopold.
منابع مشابه
Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملThe Lerch zeta function IV. Hecke operators
This paper studies algebraic and analytic structures associated with the Lerch zeta function. It defines a family of two-variable Hecke operators {Tm : m ≥ 1} given by Tm(f )(a, c) = 1 m ∑m−1 k=0 f ( a+k m ,mc) acting on certain spaces of real-analytic functions, including Lerch zeta functions for various parameter values. The actions of various related operators on these function spaces are de...
متن کامل$varepsilon$-Simultaneous approximations of downward sets
In this paper, we prove some results on characterization of $varepsilon$-simultaneous approximations of downward sets in vector lattice Banach spaces. Also, we give some results about simultaneous approximations of normal sets.
متن کاملAPPROXIMATIONS TO - , DI - AND TRI - LOGARITHMS 3 Proof
We propose hypergeometric constructions of simultaneous approximations to polylogarithms. These approximations suit for computing the values of polylogarithms and satisfy 4-term Apéry-like (polynomial) recursions. The series for the logarithm function
متن کاملAnother discrete Fourier transform pairs associated with the Lipschitz-Lerch zeta function
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Discrete Fourier transform Alternating zeta functions Hurwitz–Lerch zeta function Lipschitz–Lerch zeta function Le...
متن کامل