Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
نویسندگان
چکیده
Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine residue to C(alpha)-formylglycine. This modification is catalyzed by at least three nonhomologous enzymatic systems in bacteria. Each enzymatic system is currently considered to be dedicated to the modification of either cysteine or serine residues encoded in the sulfatase-active site and has been accordingly categorized as Cys-type and Ser-type sulfatase-maturating enzymes. We report here the first detailed characterization of two bacterial anaerobic sulfatase-maturating enzymes (anSMEs) that are physiologically responsible for either Cys-type or Ser-type sulfatase maturation. The activity of both enzymes was investigated in vivo and in vitro using synthetic substrates and the successful purification of both enzymes facilitated the first biochemical and spectroscopic characterization of this class of enzyme. We demonstrate that reconstituted anSMEs are radical S-adenosyl-l-methionine enzymes containing a redox active [4Fe-4S](2+,+) cluster that initiates the radical reaction by binding and reductively cleaving S-adenosyl-l-methionine to yield 5 '-deoxyadenosine and methionine. Surprisingly, our results show that anSMEs are dual substrate enzymes able to oxidize both cysteine and serine residues to C(alpha)-formylglycine. Taken together, the results support a radical modification mechanism that is initiated by hydrogen abstraction from a serine or cysteine residue located in an appropriate target sequence.
منابع مشابه
SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes.
S-Adenosylmethionine (SAM, also known as AdoMet) radical enzymes use SAM and a [4Fe-4S] cluster to catalyze a diverse array of reactions. They adopt a partial triose-phosphate isomerase (TIM) barrel fold with N- and C-terminal extensions that tailor the structure of the enzyme to its specific function. One extension, termed a SPASM domain, binds two auxiliary [4Fe-4S] clusters and is present wi...
متن کاملX-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification.
Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S-adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sul...
متن کاملCharacterization of auxiliary iron–sulfur clusters in a radical S‐adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1
PqqE is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the initial reaction of pyrroloquinoline quinone (PQQ) biosynthesis. PqqE belongs to the SPASM (subtilosin/PQQ/anaerobic sulfatase/mycofactocin maturating enzymes) subfamily of the radical SAM superfamily and contains multiple Fe-S clusters. To characterize the Fe-S clusters in PqqE from Methylobacterium extorquens AM1, Cys r...
متن کاملRadical S-Adenosylmethionine Enzymes
ing a H-atom from substrate. These and other kinetics studies demonstrated that PFL-AE could undergo multiple turnover events, with the 150 PFL activations per PFL-AE reported in Table 1 not the upper limit, but rather a number limited by the PFL:PFL-AE ratio in the steady-state kinetics assays. As can be seen from the data summarized in Table 1, PFL-AE is one of the few radical SAM enzymes dem...
متن کاملParamagnetic Intermediates Generated by Radical S-Adenosylmethionine (SAM) Enzymes
A [4Fe-4S](+) cluster reduces a bound S-adenosylmethionine (SAM) molecule, cleaving it into methionine and a 5'-deoxyadenosyl radical (5'-dA(•)). This step initiates the varied chemistry catalyzed by each of the so-called radical SAM enzymes. The strongly oxidizing 5'-dA(•) is quenched by abstracting a H-atom from a target species. In some cases, this species is an exogenous molecule of substra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 26 شماره
صفحات -
تاریخ انتشار 2008