Osteogenesis evaluation of duck’s feet-derived collagen/hydroxyapatite sponges immersed in dexamethasone
نویسندگان
چکیده
BACKGROUND The aim of this study was to investigate the osteogenesis effects of DC and DC/HAp sponge immersed in without and with dexamethasone. METHODS The experimental groups in this study were DC and DC/HAp sponge immersed in without dexamethasone (Dex(-)DC and Dex(-)-DC/HAp group) and with dexamethasone (Dex(+)-DC and Dex(+)-DC/HAp group). We characterized DC and DC/HAp sponge using compressive strength, scanning electron microscopy (SEM). Also, osteogenic differentiation of BMSCs on sponge (Dex(-)DC, Dex(-)-DC/HAp, Dex(+)-DC and Dex(+)-DC/HAp group) was assessed by SEM, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assay, alkaline phosphatase (ALP) activity assay and reverse transcription-PCR (RT-PCR). RESULTS In this study, we assessed osteogenic differentiation of BMSCs on Duck's feet-derived collagen (DC)/HAp sponge immersed with dexamethasone Dex(+)-DC/HAp. These results showed that Dex(+)-DC/HAp group increased cell proliferation and osteogenic differentiation of BMSCs during 28 days. CONCLUSION From these results, Dex(+)-DC/HAp can be envisioned as a potential biomaterial for bone regeneration applications.
منابع مشابه
Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro.
Osteogenic cultures of embryonic stem cells (ESCs) are predominately derived from three-dimensional cell spheroids called embryoid bodies (EBs). An alternative method that has been attempted and merits further attention avoids EBs through the immediate separation of ESC colonies into single cells. However, this method has not been well characterized and the effect of omitting the EB step is unk...
متن کاملThe effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix
The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...
متن کاملThe effect of Silica coating on bioactivity and biodegradability of Hydroxyapatite synthesized in collagen matrix
The aim of this work was to investigate the effect of silica coating on bioactivity and biodegradability of hydroxyapatite. In this purpose, we firstly attempted to synthesis hydroxyapatite (HA) nanoparticles and its silica coated (Si-HA) sample in collagen matrix using calcium chloride, sodium phosphate and sodium silicate. Characterization of the sample was carried out using Fourier transform...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملHydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.
Hydroxyapatite (HA) reinforced collagen scaffolds have shown promise for synthetic bone graft substitutes and tissue engineering scaffolds. Freeze-dried HA-collagen scaffolds are readily fabricated and have exhibited osteogenicity in vivo, but are limited by an inherent scaffold architecture that results in a relatively small pore size and weak mechanical properties. In order to overcome these ...
متن کامل