A Mutually Consistent Seismic-Hazard Source Model for Southem California

نویسندگان

  • Edward H. Field
  • David D. Jackson
  • James F. Dolan
چکیده

A previous attempt to integrate geological, geodetic, and observed seismicity data into a probabilistic-hazard source model predicted a rate of magnitude 6 to 7 earthquakes significantly greater than that observed historically. One explanation was that the discrepancy, or apparent earthquake deficit, is an artifact of the upper magnitude limit built into the model. This was controversial, however, because removing the discrepancy required earthquakes larger than are seen in the geological record and larger than implied from empirical relationships between fault dimension and magnitude. Although several articles have addressed this issue, an alternative, integrated source model without an apparent deficit has not yet appeared. We present a simple geologically based approach for constructing such a model that agrees well with the historical record and does not invoke any unsubstantiated phenomena. The following factors are found to be influential: the b-value and minimum magnitude applied to Gutenberg-Richter seismicity; the percentage of moment released in characteristic earthquakes; a round-off error in the moment-magnitude definition; bias due to historical catalog incompleteness; careful adherence to the conservation of seismic moment rate; uncertainty in magnitude estimates obtained from empirical regressions; allowing multi-segment ruptures (cascades); and the time dependence of recurrence rates. The previous apparent deficit is shown to have resulted from a combination of these factors. None alone caused the problem nor solves it. The model presented here is relatively robust with respect to these factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Uncertainties of the 2002 Update of California Seismic Hazard Maps

In this article we present and explore the source and ground-motion model uncertainty and parametric sensitivity for the 2002 update of the California probabilistic seismic hazard maps. Our approach is to implement a Monte Carlo simulation that allows for independent sampling from fault to fault in each simulation. The source-distance dependent characteristics of the uncertainty maps of seismic...

متن کامل

Why We Need a New Paradigm of Earthquake Occurrence

Like all theories in any branch of physics, theories of the seismic source should be testable (i.e., they should be formulated so that they can be objectively compared to observations and rejected if they disagree). Unfortunately, many widely held theories of the seismic source, such as the elastic rebound paradigm and characteristic earthquake model, and theories for applying them to make prob...

متن کامل

Seismic Hazard Estimate from Background Seismicity in Southern California

We analyzed the historical seismicity in southern California to develop a rational approach for calculating the seismic hazard from background seismicity of magnitude 6.5 or smaller. The basic assumption for the approach is that future earthquakes will be clustered spatially near locations of historical mainshocks of magnitudes equal to or greater than 4. We analyzed the declustered California ...

متن کامل

Earthquake induced Deterministic Damage and Economic Loss Estimation for Kolkata, India

The city of Kolkata, the State Capital of West Bengal is jolted by earthquakes time and again from the tectonic regimes of the Central Himalaya, highly seismogenic Northeast India and the active tectonics of Bengal Basin which is a pericratonic tertiary basin on which the City is located. Earthquake disaster mitigation and management necessitates seismic hazard assessment for the generation of ...

متن کامل

CyberShake: A Physics-Based Seismic Hazard Model for Southern California

CyberShake, as part of the Southern California Earthquake Center’s (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005