Influence of Branching Density in Ethylene-Octene Copolymers on Electron Beam Crosslinkability

نویسندگان

  • Petr Svoboda
  • Seth Darling
چکیده

Abstract: Two ethylene-octene copolymers (EOC) with the same melt flow index (MFI = 3 g/10 min) but different octene contents, being 20 and 35 wt % (EOC-20 and EOC-35), were compared with regard to sensitivity to electron beam crosslinking. Dynamic mechanical analysis (DMA) revealed a large influence of the octene content on the storage modulus and the glass transition temperature (Tg) but a smaller influence of irradiation on the properties below melting point (Tm). Rheology at 150 ̋C pointed out large differences in samples crosslinked in the 0–60 kGy range and at lower frequencies (0.1–1 Hz). The loss factor tanδ confirmed that before irradiation the two copolymers were very similar, while after irradiation to 120 kGy, the EOC-35 had considerably lower tanδ than EOC-20, which corresponds to a better elasticity (or a higher level of crosslinking). A high-temperature creep test showed a considerably lower creep for EOC with a higher octene content. An analysis of the insoluble gel content exhibited higher values for EOC-35 confirming a higher level of crosslinking. Analysis according to the Charlesby-Pinner equation revealed increased crosslinking-to-scission ratio, G(X)/G(S), for EOC-35. While the G(X) value changed only slightly, a significant decrease in the G(S) value was discovered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of comonomer on ethylene/α-olefin copolymers prepared using [bis(N-(3-tert butylsalicylidene)anilinato)] titanium (IV) dichloride complex.

We describe the synthesis of [bis(N-(3-tert-butylsalicylidene)anilinato)] titanium (IV) dichloride (Ti-FI complex) and examine the effects of comonomer (feed concentration and type) on its catalytic performance and properties of the resulting polymers. Ethylene/1-hexene and ethylene/1-octene copolymers were prepared through copolymerization using Ti-FI catalyst, activated by MAO cocatalyst at 3...

متن کامل

Crystallization, Melting Behavior, Physical Properties, and Physical Aging of Ethylene/1-Octene Copolymers

The time dependence of the physical properties of ethylene/1-octene (EO)-copolymers after primary crystallization is investigated by calorimetry, density, and creep measurements. The temporal evolution of the multiple melting of EO-copolymers is monitored by differential scanning calorimetry. The low temperature endotherm displays an evolution similar to that observed for the enthalpy recovery ...

متن کامل

An Analytical Equation of State Extended to Copolymers

calculate some thermodynamic properties of molten polymers including specific volume and isothermal compressibility (S.M. Hoseini, Physical Chemistry & Electrochemistry, 2 (2014) 56-65). This work extended that EOS to predict the volumetric properties of some molten ethylene copolymers including ethylene/1-octene, ethylene/1-butene (xethylene equal to 0.8543 and 0.563), ethylene/propene. The ab...

متن کامل

Influence of diethyl zinc on ethylene-norbornene copolymerization

Ethylene-norbornene copolymers were synthesized with a homogeneous catalyst system based on bis(imino) pyridine iron with the addition of diethyl zinc (DEZ) as alkyd transfer agent to promote immortal copolymerization. The addition of DEZ did not influence the catalytic activity in copolymerization with 7.5 mmol of norbornene (NB), but in the reactions with 70 mmol, the comonomer promoted an in...

متن کامل

Influence of Engage® copolymer type on the properties of Engage®/silicone rubber-based thermoplastic dynamic vulcanizates

Thermoplastic vulcanizates (TPVs) are a special class of thermoplastic elastomers, which are produced by simultaneously mixing and crosslinking a rubber with a thermoplastic polymer at an elevated temperature. Peroxide-cured TPVs based on blends of silicone rubber and thermoplastic Engage of two different types, mainly ethylene-octene and ethylenebutene copolymers at different blend ratios have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015