Polymer translocation through pores with complex geometries.
نویسندگان
چکیده
We propose a method for the theoretical investigation of polymer translocation through composite pore structures possessing arbitrarily specified geometries. The proposed method accounts for possible reverse chain motions at the interface between the constituent parts of a composite pore. As an illustration of our method, we study polymer translocation between two spherical compartments connected by a cylindrical pore and by a composite pore consisting of two connected cylinders of different diameters, which is structurally similar to the alpha-hemolysin membrane channel. We demonstrate that reverse chain motions between the pore constituents may contribute significantly to the total translocation time. Our results further establish that translocation through a two-cylinder composite pore is faster when the chain is introduced into the pore on the cis (wide) side of the channel rather than the trans (narrow) side.
منابع مشابه
Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
We investigate unforced and forced translocation of a Rouse polymer (in the absence of hydrodynamic interactions) through a silicon nitride nanopore by three-dimensional Langevin dynamics simulations, as a function of pore dimensions and applied voltage. Our nanopore model consists of an atomistically detailed nanopore constructed using the crystal structure of β-Si(3)N(4). We also use realisti...
متن کاملHow polymers translocate through pores: memory is important.
Many biological processes, such as DNA and RNA transport across nuclear pores, injections of viral DNA, gene swapping, and protein transport across cellular membranes, involve the motion of polymer molecules across narrow channels (1). Translocation through nanopores is also one of the most important and powerful methods for analyzing properties of single biopolymer molecules and for investigat...
متن کاملThrough the eye of the needle: recent advances in understanding biopolymer translocation.
In recent years polymer translocation, i.e., transport of polymeric molecules through nanometer-sized pores and channels embedded in membranes, has witnessed strong advances. It is now possible to observe single-molecule polymer dynamics during the motion through channels with unprecedented spatial and temporal resolution. These striking experimental studies have stimulated many theoretical dev...
متن کاملPolymer translocation through a nanopore under a pulling force.
We investigate polymer translocation through a nanopore under a pulling force using Langevin dynamics simulations. We concentrate on the influence of the chain length N and the pulling force F on the translocation time tau . The distribution of tau is symmetric and narrow for strong F . We find that tau approximately N{2} and translocation velocity v approximately N{-1} for both moderate and st...
متن کاملActive polymer translocation through flickering pores.
Single file translocation of a homopolymer through an active channel under the presence of a driving force is studied using Langevin dynamics simulation. It is shown that a channel with sticky walls and oscillating width could lead to significantly more efficient translocation as compared to a static channel that has a width equal to the mean width of the oscillating pore. The gain in transloca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 133 2 شماره
صفحات -
تاریخ انتشار 2010