Role of local premotor nonspiking interneurons in walking pattern generation of the stick insect Carausius morosus
نویسنده
چکیده
In the course of this thesis, neural mechanisms underlying the generation of single leg stepping in the stick insect Carausius morosus were investigated at the premotor level. Local nonspiking interneurons (NSIs) are important premotor elements within the leg muscle control system of insects, which integrate sensory signals from different sources and provide synaptic drive onto motoneurons (MNs). The single middle leg preparation used allows intracellular recordings from identified NSIs while the active animal performs stepping movements on a treadmill. For identification, NSIs were stained following physiological characterization by iontophoretical dye injection and viewed with a confocal laser scanning microscope. The alternating activity of flexor and extensor tibiae MNs during single middle leg stepping, which characterizes stance and swing phase, respectively, was monitored by extracellular recordings. In the first part of the thesis, the activity pattern of NSIs driving tibial MNs during single leg stepping was studied and their contribution to the generation of stepping motor output was revealed. With the initiation of stepping, modulations of membrane potential were generated in all NSIs that were closely related to the step cycle. The activity pattern comprised distinct excitatory or inhibitory phasic input, during at least one phase of the step cycle. Most NSI types showed an inversion of membrane potential polarization from one phase of the step cycle to the other. It was shown that the activity pattern of the individual NSIs during stepping was not predictable from the synaptic drive, i.e., excitatory or inhibitory, they provide onto MNs in the resting animal. Artificial alterations of membrane potential and measurements of local input resistance for individual NSIs revealed that phasic excitatory and inhibitory modulations of membrane potential during stepping results from true excitatory and inhibitory synaptic input. Current injections into NSI I1 immediately terminated stepping sequences, indicating an important role of I1 in the control of motor output for stepping. The amplitude of phasic membrane potential modulation of NSIs during stepping varied markedly. The maximum peak-to-peak amplitude of membrane potential modulation Abstract during stepping amounted to 16.9 ± 6.0 mV on average for all NSIs presented in this study and ranged from 5 to 34 mV for individual recordings. The time of peak and trough potential occurrence within a step cycle appears to contribute substantially to the patterning of motor output, since the extensor MN activity was closely correlated with the membrane potential of individual NSIs, e.g., E2/3, E4, E8 and I2. For the first time, it could be shown that the activity of NSIs during stepping can largely be explained by the state dependency of their inputs from the femoral chordotonal organ, one of the main leg sensors. Hence, the results presented here strongly support the notion that the motor response during the „active reaction“ represents a part of the control regime for the generation of single leg stepping. In the second part of the thesis, the interest was to investigate neural mechanisms underlying adaptivity in locomotor systems. Therefore, it was examined which parameters contribute to alterations in stepping velocity. An important finding was that stepping velocity varies with membrane potential alterations of NSIs activated during stance phase, but not with NSIs activated during swing phase. Furthermore, the results suggest that the stance part of the locomotor network is stronger activated during fast stepping velocities and that the swing part is simultaneously inhibited to the same extent. However, investigation of extensor MN activity failed to show a correlation with stepping velocity. This finding implies that swing phase activity is independent of stepping velocity and, hence, corroborates the notion that the swing part of the premotor network does not contribute to alterations in stepping velocity. Finally, it was investigated whether there is a correlation between swing phase activation and stance phase velocity during single leg stepping. The results indicate that there is no influence between stance and swing phase activation in the single middle leg preparation, at least, not in the way that activation strength of stance would influence the subsequent activation of swing phase. The insights gained on premotor NSIs within the femur-tibia joint control system of the stick insect raise the assumption of a premotor network organized into functionally different and partly overlapping pools of NSIs. In the single middle leg preparation, individual NSI types appear to control the actual magnitude of stepping motor output (e.g., E2/3, E8, I2) or the stepping velocity (e.g., E1, I1, I2), while others seem to control step phase transitions (e.g., E2/3, E4, I4) or phase duration (e.g., I8, I1, E1).during stepping amounted to 16.9 ± 6.0 mV on average for all NSIs presented in this study and ranged from 5 to 34 mV for individual recordings. The time of peak and trough potential occurrence within a step cycle appears to contribute substantially to the patterning of motor output, since the extensor MN activity was closely correlated with the membrane potential of individual NSIs, e.g., E2/3, E4, E8 and I2. For the first time, it could be shown that the activity of NSIs during stepping can largely be explained by the state dependency of their inputs from the femoral chordotonal organ, one of the main leg sensors. Hence, the results presented here strongly support the notion that the motor response during the „active reaction“ represents a part of the control regime for the generation of single leg stepping. In the second part of the thesis, the interest was to investigate neural mechanisms underlying adaptivity in locomotor systems. Therefore, it was examined which parameters contribute to alterations in stepping velocity. An important finding was that stepping velocity varies with membrane potential alterations of NSIs activated during stance phase, but not with NSIs activated during swing phase. Furthermore, the results suggest that the stance part of the locomotor network is stronger activated during fast stepping velocities and that the swing part is simultaneously inhibited to the same extent. However, investigation of extensor MN activity failed to show a correlation with stepping velocity. This finding implies that swing phase activity is independent of stepping velocity and, hence, corroborates the notion that the swing part of the premotor network does not contribute to alterations in stepping velocity. Finally, it was investigated whether there is a correlation between swing phase activation and stance phase velocity during single leg stepping. The results indicate that there is no influence between stance and swing phase activation in the single middle leg preparation, at least, not in the way that activation strength of stance would influence the subsequent activation of swing phase. The insights gained on premotor NSIs within the femur-tibia joint control system of the stick insect raise the assumption of a premotor network organized into functionally different and partly overlapping pools of NSIs. In the single middle leg preparation, individual NSI types appear to control the actual magnitude of stepping motor output (e.g., E2/3, E8, I2) or the stepping velocity (e.g., E1, I1, I2), while others seem to control step phase transitions (e.g., E2/3, E4, I4) or phase duration (e.g., I8, I1, E1). Zusammenfassung Es wurden neuronale Mechanismen der Laufrhythmuserzeugung für ein Einzelbein der Stabheuschrecke Carausius morosus auf prämotorischer Ebene untersucht. Lokale nichtspikende Interneurone (NSIs) stellen wichtige prämotorische Elemente im Kontrollsystem der Beinmuskulatur von Insekten dar, welche sensorische Signale von verschiedenen Quellen verarbeiten und den motorischen Ausgang kontrollieren. Im verwendeten Einbeinpräparat kann intrazellulär von identifizierten NSIs abgeleitet werden während das aktive Tier Laufbewegungen auf einem Laufband ausführt. Zur Identifikation wurden die NSIs nach physiologischer Charakterisierung iontophoretisch gefärbt und an einem konfokalen Laser-Scanning-Mikroskop betrachtet. Die für Stemmund Schwingphase eines Laufzyklus charakteristische alternierende Aktivität tibialer Extensorund Flexor-Motoneurone wurde extrazellulär registriert. Im ersten Teil der Arbeit wurde das Aktivitätsmuster von NSIs mit Einfluss auf tibiale Motoneurone beim Einbeinlaufen untersucht und ihr Beitrag zur Laufrhythmuserzeugung aufgedeckt. Mit Beginn einer Laufsequenz wurde in allen NSIs eine Membranpotentialmodulation im Zusammenhang mit dem Schrittzyklus erzeugt. Das Aktivitätsmuster wies deutlich erregende oder hemmende phasische Eingänge während mindestens einer Phase des Schrittzyklus auf. NSIs zeigten mehrheitlich eine Umkehrung ihres Membranpotentialverlaufs von einer Schrittzyklushälfte zur anderen. Es wurde gezeigt, dass das Aktivitätsmuster von NSIs während des Laufens nicht von dem erregenden oder hemmenden Einfluss, den sie im ruhenden Tier auf Motoneurone ausüben, vorhersagbar ist. Durch experimentelle Veränderungen des Membranpotentials und Messungen des lokalen Eingangswiderstandes von NSIs konnte aufgedeckt werden, dass die phasischen Membranpotentialmodulationen aus erregenden und hemmenden synaptischen Eingängen resultieren. Strrominjektionen in NSI I1 führten zu sofortigem Abbruch von Laufsequenzen und deuten somit auf eine bedeutende Rolle von I1 in der Laufrhythmuserzeugung hin. Die Amplitude der phasischen Membranpotentialmodulationen von NSIs variierte beträchtlich. Die maximale Amplitude während des Laufens betrug 16.9 ± 6.0 mV Spitze-Spitze im Mittel für alle untersuchten NSIs und Zusammenfassung reichte von 5 bis 34 mV in einzelnen Ableitungen. Der Zeitpunkt des Auftretens der maximalen Deund Hyperpolarisation innerhalb des Schrittzyklus scheint eine entscheidende Rolle bei der Gestaltung des motorischen Ausgangs zu spielen, da die Aktivität von Extensor-Motoneuronen maßgeblich vom Membranpotential einzelner NSIs, z.B. E2/3, E4, E8 und I2, abhing. Zum ersten Mal konnte gezeigt werden, dass die Aktivität von NSIs beim Laufen hinreichend mit der Zustandsabhängigkeit ihrer Eingänge vom femoralen Chordotonalorgan, einem der wichtigsten Beinsinnesorgane, erklärt werden kann. Dadurch unterstützen die hier vorgestellten Ergebnisse maßgeblich den Gedanken, dass die motorische Antwort während der „aktiven Reaktion“ einen Teil des Kontrollregimes für die Laufrhythmuserzeugung im Einzelbein darstellt. Im zweiten Teil der Arbeit lag das Interesse auf neuronalen Mechanismen, welche der Adaptivität lokomotorischer Systeme zugrunde liegen. Es wurde untersucht welche Parameter zu Änderungen der Laufgeschwindigkeit beitragen. Ein wichtiger Befund war, dass Laufgeschwindigkeitsänderungen nur im Zusammenhang mit Membranpotentialmodulationen von NSIs auftreten, die während der Stemmphase aktiviert werden, nicht jedoch bei denjenigen, die während der Schwingphase aktiviert werden. Die Ergebnisse deuten darauf hin, dass der Stemmphasenteil des Kontrollnetzwerks bei hohen Laufgeschwindigkeiten stärker aktiviert wird und zugleich der Schwingphasenteil gleichermaßen gehemmt wird. Es konnte jedoch kein Zusammenhang zwischen der Aktivität von Extensor-Motoneuronen und der Laufgeschwindigkeit festgestellt werden. Dieses Ergebnis zeigt, dass die Schwingphasenaktivität unabhängig von der Laufgeschwindigkeit ist und stützt somit den Befund, dass der Schwingphasenteil des prämotorischen Netzwerks nicht zu Änderungen der Laufgeschwindigkeit beiträgt. Schließlich wurde untersucht, ob ein Zusammenhang zwischen der Aktivierung der Schwingphase und der Stemmphasengeschwindigkeit beim Einbeinlaufen besteht. Es konnte jedoch kein Einfluss der Aktivierungsstärke der Stemmphase auf die Aktivierung der folgenden Schwingphase festgestellt werden. Die hier gewonnenen Erkenntnisse lassen vermuten, dass das prämotorische Netzwerk aus funktionell verschiedenen, teilweise überlappenden Gruppen von NSIs aufgebaut ist. Einige NSIs kontrollieren offensichtlich die motorische Ausgangsstärke (E2/3, E8, I2) oder die Laufgeschwindigkeit (E1, I1, I2), während andere den Phasenübergang (E2/3, E4, I4) oder die Phasenlänge (I8, I1, E1) zu kontrollieren scheinen.
منابع مشابه
Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
In insect walking systems, nonspiking interneurons (NSIs) play an important role in the control of posture and movement. As such NSIs are known to contribute to state-dependent modifications in processing of proprioceptive signals from the legs. For example, NSIs process a flexion of the femur-tibia (FTi) joint signaled by the femoral chordotonal organ (fCO) such that the stance phase motor out...
متن کاملBody side-specific control of motor activity during turning in a walking animal
Animals and humans need to move deftly and flexibly to adapt to environmental demands. Despite a large body of work on the neural control of walking in invertebrates and vertebrates alike, the mechanisms underlying the motor flexibility that is needed to adjust the motor behavior remain largely unknown. Here, we investigated optomotor-induced turning and the neuronal mechanisms underlying the d...
متن کاملModulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
During walking, maintenance and coordination of activity in leg motoneurons requires intersegmental signal transfer. In a semi-intact preparation of the stick insect, we studied membrane potential modulations in mesothoracic (middle leg) motoneurons and local premotor nonspiking interneurons that were induced by stepping of a front leg on a treadmill. The activity in motoneurons ipsi- and contr...
متن کاملQuadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive ...
متن کاملIdentification of multiple peptides homologous to cockroach and cricket allatostatins in the stick insect Carausius morosus.
Eighteen peptides were isolated from brain extracts of the stick insect Carausius morosus. The peptides were purified in four steps by high-performance liquid chromatography, monitored by their ability to inhibit juvenile hormone biosynthesis by corpora allata of the cricket Gryllus bimaculatus in vitro, and chemically characterised by Edman degradation and mass spectrometry. We obtained comple...
متن کاملIntersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.
A key element of walking is the coordinated interplay of multiple limbs to achieve a stable locomotor pattern that is adapted to the environment. We investigated intersegmental coordination of walking in the stick insect, Carausius morosus by examining the influence a single stepping leg has on the motoneural activity of the other hemiganglia, and whether this influence changes with the walking...
متن کامل